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Toric varieties

Theorem (M.Atiyah; V.Guillemin, S.Sternberg'82)

Let (M, ω) be a 2d-dimensional compact connected symplectic

manifold with a hamiltonian action of a compact torus Tn. Then

the image of the moment map µ : M � Rn is a convex polytope P

which is the convex hull of µ(MT).

If d = n and the torus action is e�ective, then (M, ω) is a

symplectic toric manifold.

A polytope P in Rn is called Delzant if its normal fan is smooth.

Theorem (T.Delzant'88)

There is a 1-1 correspondence between compact symplectic toric

manifolds (M, ω, µ) (up to equivariant symplectomorphism) and

Delzant polytopes µ(M) (up to lattice isomorphism).
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Quasitoric manifolds

De�nition

Let P be a combinatorial simple polytope of dimension n. A
quasitoric manifold over P is a smooth 2n-dimensional manifold M
with a smooth action of the torus T n satisfying the two conditions:

(1) the action is locally standard;

(2) there is a continuous projection π : M � P whose �bers are

T n-orbits.

Remarks

(a) M/T is homeomorphic, as a manifold with corners, to the

simple polytope P ;

(b) The action is free over the interior of P , the vertices of P
correspond to the �xed points of the torus action on M;

(c) A projective toric manifold is a quasitoric manifold.
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A moment-angle manifold ZP

In the work of M.Davis and T.Januszkiewicz'91 the following

construction appeared.

De�nition

Suppose Pn is a combinatorial simple polytope with facets

F1, . . . ,Fm. Denote by T Fi a 1-dimensional coordinate subgroup in

T F ∼= Tm for each 1 ≤ i ≤ m and TG =
∏

T Fi ⊂ T F for a face

G = ∩Fi of a polytope Pn. Then the moment-angle manifold

corresponding to P is a quotient space

ZP = T F × Pn/ ∼,

where (t1, p) ∼ (t2, q) i� p = q ∈ P and t1t
−1
2
∈ TG(p), G (p) is a

minimal face of P which contains p = q.
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A moment-angle manifold ZP

Simple polytopes

Now consider simple convex n-dimensional polytopes P in the

Euclidean space Rn with scalar product 〈 , 〉.

Such a polytope P can be de�ned as a bounded intersection of m
halfspaces:

P =
{
x ∈ Rn : 〈ai , x〉+ bi ≥ 0 for i = 1, . . . ,m

}
, (∗)

where ai ∈ Rn, bi ∈ R. We assume that the hyperplanes de�ned by

the equations 〈ai , x〉+ bi = 0 are in general position, that is, at

most n of them meet at a single point. We also assume that there

are no redundant inequalities in (∗), that is, no inequality can be

removed from (∗) without changing P .
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A moment-angle manifold ZP

Then P has exactly m facets given by

Fi =
{
x ∈ P : 〈ai , x〉+ bi = 0

}
, for i = 1, . . . ,m.

Let AP be the m × n matrix of row vectors ai , and let bP be the

column vector of scalars bi ∈ R. Then we can write (∗) as

P =
{
x ∈ Rn : APx + bP ≥ 0},

and consider the a�ne map

iP : Rn → Rm, iP(x) = APx + bP .

It embeds P into

Rm
≥ = {y ∈ Rm : yi ≥ 0 for i = 1, . . . ,m}.
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A moment-angle manifold ZP

De�nition: V.Buchstaber and T.Panov (1998)

We de�ne the space ZP from the commutative diagram

ZP
iZ−−−−→ Cmy yµ

P
iP−−−−→ Rm

≥

where µ(z1, . . . , zm) = (|z1|2, . . . , |zm|2). The latter map may be

thought of as the quotient map for the coordinatewise action of the

standard torus

Tm = {z ∈ Cm : |zi | = 1 for i = 1, . . . ,m}

on Cm. Therefore, Tm acts on ZP with quotient P , and iZ is a

Tm-equivariant embedding.
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A moment-angle manifold ZP

Remarks

If P1 and P2 are combinatorially equivalent, i.e. their face

lattices are isomorphic, then ZP1
and ZP2

are homeomorphic.

The opposite statement is not true (truncation polytopes);

For any quasitoric manifold M2n � P over a simple polytope P
there is a principal Tm−n-bundle ZP � M2n, s.t. the

composition ZP � M2n � P is a projection onto the orbit

space of the Tm-action on ZP .
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A moment-angle manifold ZP

Examples

1) If P = ∆n then ZP = S2n+1;

2) If P = P1 × P2 then ZP = ZP1
×ZP2

Consider a prism Pr3 = vc1(∆3), ZPr3 = S3 × S5 and cut a

vertical edge. We get a 3-cube C , for which
ZC = S3 × S3 × S3.

If we perform an edge truncation of C we get a 5-gonal prism

Pr5 and ZPr5 = (S3 × S4)#5 × S3.

Consider a 3-polytope P = vc1(C ). Then ZP is not homotopy

equivalent to a connected sum of products of spheres.
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Motivation: formality

The moment-angle functor Z represents the homotopy type of ZP

and the ring structure of H∗(ZP ; k) as invariants of the

combinatorial type (face lattice equivalence) of P .

Here we are mainly interested in the following problem:

Formality and higher Massey products for ZP

Determine the widest possible class of simple polytopes P s.t. there

are nontrivial higher Massey operations in H∗(ZP ;Q), or more

generally, ZP is not rationally formal. Formality means, that its

Sullivan-de Rham algebra (A, d) of PL-forms with coe�cients in Q
is formal in CDGA, i.e., there exists a zigzag of quasi-isomorphisms

(weak equivalence) between (A, d) and its cohomology algebra

(H∗(ZP ;Q), 0).
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Motivation: formality

Examples

spheres;

H-spaces;

symmetric spaces;

compact connected Lie groups G and their classifying spaces

BG ;

compact K�ahler manifolds (P.Deligne, Ph.Gri�ths, J.Morgan,

D.Sullivan'75) and, in particular, projective toric varieties;

quasitoric manifolds (T.Panov, N.Ray'08).

Moreover, formality is preserved by wedges, direct products and

connected sums.
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Stanley-Reisner rings

Let k be a commutative ring with a unit and consider a

(n − 1)-dimensional simplicial complex K on the ordered set

[m] = {1, . . . ,m}. Let k[m] = k[v1, . . . , vm] be the graded
polynomial algebra on m variables, deg(vi ) = 2.

Face rings

A face ring (or a Stanley-Reisner ring) of K is the quotient ring

k[K ] := k[v1, . . . , vm]/IK

where IK is the ideal generated by those square free monomials

vi1 · · · vis for which {i1, . . . , is} is not a simplex of K . We denote

k[P] = k[∂P∗].

Note that k[K ] is a module over k[v1, . . . , vm] via the quotient

projection.
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Cohomology ring of ZP

The following result relates cohomology of ZP to combinatorics of

the polytope P :

Theorem (V.Buchstaber, T.Panov'98)

If we de�ne a di�erential graded algebra

R(P) = Λ[u1, . . . , um]⊗ k[P]/(v2i = uivi = 0, 1 ≤ i ≤ m) with

bideg ui = (−1, 2), bideg vi = (0, 2); dui = vi , dvi = 0, then:

H∗,∗(ZP ; k) ∼= H∗,∗[R(P), d ] ∼= Tor∗,∗k[v1,...,vm](k[P],k).

These algebras admit N⊕ Zm-multigrading and we have

Tor−i ,2ak[v1,...,vm](k[P],k) ∼= H−i ,2a(R(P), d),

where Tor−i ,2Jk[v1,...,vm](k[P],k) ∼= H̃ |J|−i−1(PJ ; k) for J ⊂ [m]. Here

we denote PJ = ∪j∈J Fj . The multigraded component

Tor−i ,2ak[v1,...,vm](k[P],k) = 0, if a is not a (0, 1)-vector of length m.
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Graph-associahedra

We now turn to a discussion of �ag nestohedra.

Building set

Let S = {1, 2, . . . , n + 1}, n ≥ 2. A building set on S is a family of

subsets B = {Bk ⊆ S}, such that: 1) {i} ∈ B for all 1 ≤ i ≤ n + 1;

2) if Bi ∩ Bj 6= ∅, then Bi ∪ Bj ∈ B .

Nestohedra

Nestohedron is a simple convex n-dimensional polytope

PB =
∑

Bk∈B
∆Bk

, where ∆Bk
= conv{ej | j ∈ Bk} ⊂ Rn+1.

Example: graph-associahedra

A graphical building set B(Γ) for a graph Γ on the vertex set S
consists of such Bk that ΓBk

is a connected subgraph of Γ.
Then PΓ = PB(Γ) is called a graph-associahedron.
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Graph-associahedra

Graph-associahedra were �rst introduced by M.Carr and

S.Devadoss (2006) in their study of Coxeter complexes.

Examples

Γ is a complete graph on [n + 1].
Then PΓ = Pen is a permutohedron.

Γ is a stellar graph on [n + 1].
Then PΓ = Stn is a stellahedron.

Γ is a cycle graph on [n + 1].
Then PΓ = Cyn is a cyclohedron (or Bott-Taubes polytope).

Γ is a chain graph on [n + 1].
Then PΓ = Asn is an associahedron (or Stashe� polytope).

Graph-associahedra are �ag polytopes, i.e. if a number of facets

has an empty intersection then some pair of these facets has an

empty intersection. Moreover, they are Delzant polytopes (all

nestohedra are, due to the result of A.Zelevinsky).
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Graph-associahedra

In order to work with combinatorial types of graph-associahedra we

should describe the structure of their face lattices.

Face poset

Facets of PΓ are in 1-1 correspondence with non maximal

connected subgraphs of Γ.
Moreover, a set of facets corresponding to such subgraphs

Γi1 , . . . , Γis has a nonempty intersection if and only if:

(1) For any two subgraphs Γik , Γil , either they do not have a

common vertex or one is a subgraph of another;

(2) If any two of the subgraphs Γik1
, . . . , Γikl

, l > 2 do not have

common vertices, then their union graph is disconnected.

If P = Pen then its facets F1 ∩ F2 6= ∅ if and only if the

corresponding Γ1 and Γ2 are subgraphs of one another;

If Γi , 1 ≤ i ≤ r are connected components of Γ then

PΓ = PΓ1
× . . .× PΓr .
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Graph-associahedra

De�nition: special subgraphs in a graph

1) Suppose Γ is a graph. For any of its connected subgraphs γ one

can compute the number i(γ) of such connected subraphs γ̃ in Γ
that either

γ ∩ γ̃ 6= ∅, γ, γ̃

or

γ ∩ γ̃ = ∅,

and γ t γ̃ is a connected subgraph in Γ.

2) We denote by imax = imax(Γ) the maximal value of i(γ) over all

connected subgraphs γ in Γ. A connected subgraph γ, on which

imax is achieved, will be called a special subgraph.
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Graph-associahedra: bigraded Betti numbers

Using the face poset structure of PΓ we get the following result:

Theorem

Let P = PΓ be a graph-associahedron of dimension n ≥ 3 for a

connected graph Γ. Then for i > imax :

β−i ,2(i+1)(P) = 0.

Denote the number of special subgraphs in Γ by s. Then

β−imax ,2(imax+1)(P) = s.
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Bigraded Betti numbers: examples

For the 4 classical series of graph-associahedra the theorem gives

the following values of imax and s.

Associahedron

β−q,2(q+1)(P) =

{
n + 3, if n is even;
n+3

2
, if n is odd;

β−i ,2(i+1)(P) = 0 for i ≥ q + 1,

where q = q(n) is:

q = q(n) =

{
n(n+2)

4
, if n is even;

(n+1)2

4
, if n is odd.
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Bigraded Betti numbers: examples

Cyclohedron

β−q,2(q+1)(P) =

{
2n + 2, if n is even;

n + 1, if n is odd;

β−i ,2(i+1)(P) = 0 for i ≥ q + 1,

where q = q(n) is:

q = q(n) =

{
n(n+2)−2

2
, if n is even;

(n+1)2−2
2

, if n is odd.
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Bigraded Betti numbers: examples

Permutohedron

β−q,2(q+1)(P) =

(
n + 1

[n+1

2
]

)
β−i ,2(i+1)(P) = 0 for i ≥ q + 1,

where q = q(n) = 2n+1 − 2[ n+1
2

] − 2[ n+2
2

] + 1

Stellahedron

β−q,2(q+1)(P) =

(
n

[n
2

]

)
β−i ,2(i+1)(P) = 0 for i ≥ q + 1,

where q = q(n) = 2n − 2[ n
2

] − 2[ n+1
2

] + [n+3

2
].
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Pontryagin algebra H∗(ΩZP)

Bigraded Betti numbers of the type β−i ,2(i+1)(P) have another

topological application by means of the following result.

Loop homology of moment-angle-manifolds

J.Grbi�c, T.Panov, S.Theriault, J.Wu (2012) proved that
m−n∑
i=1

β−i ,2(i+1)(P) equals the minimal number of multiplicative

generators of the Pontryagin algebra H∗(ΩZP ;k) for any �ag

simple polytope P .

Remark: torsion in cohomology

Consider the principal Tm−n-bundle ZP � MP for Pn = PΓ. For

P = Pen and n ≥ 5 H∗(ZP) may have an arbitrary �nite group as a

direct summand. On the other hand, due to Danilov-Jurkiewicz

theorem, H∗(MP) is always free.
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Massey k-products in H∗[A, d ]

De�ning system

Suppose (A, d) is a dga, αi = [ai ] ∈ H∗[A, d ] and ai ∈ Ani for

1 ≤ i ≤ k . Then a de�ning system for (α1, . . . , αk) is a

(k + 1)× (k + 1)-matrix C , s.t. the following conditions hold:

(1) ci ,j = 0, if i ≥ j ,

(2) ci ,i+1 = ai ,

(3) a · E1,k+1 = dC − C̄ · C for some a = a(C ) ∈ A, where
c̄i ,j = (−1)degci,j · ci ,j .

This implies: d(a) = 0 and a ∈ Am, m = n1 + . . .+ nk − k + 2.

De�nition

A Massey k-product 〈α1, . . . , αk〉 is said to be de�ned, if there

exists a de�ning system C for it.

If so, this Massey product consists of all α = [a(C )] for each
de�ning system C . It is called trivial, if [a(C )] = 0 for some C .
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Massey k-products: examples

k=2

If 〈α1, α2〉 is de�ned, then we have:

a = d(c1,3)− ā1 · a2.

k=3

If 〈α1, α2, α3〉 is de�ned, then we have:

a = d(c1,4)− ā1 · c2,4 − c̄1,3 · a3,

d(c1,3) = ā1 · a2,
d(c2,4) = ā2 · a3.
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Massey k-products: examples

k=4

If 〈α1, α2, α3, α4〉 is de�ned, then we have:

a = d(c1,5)− ā1 · c2,5 − c̄1,3 · c3,5 − c̄1,4 · a4,

d(c1,3) = ā1 · a2,
d(c1,4) = ā1 · c2,4 + c̄1,3 · a3,
d(c2,4) = ā2 · a3,
d(c2,5) = ā2 · c3,5 + c̄2,4 · a4,
d(c3,5) = ā3 · a4.
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Triple Massey products in H∗(ZP)

Remarks

(1) V.Buchstaber and V.Volodin (2011) constructed realizations of

all �ag nestohedra as 2-truncated cubes, i.e. a result of a

sequence of truncations of codimension 2 faces only, starting

with a cube, and proved the Gal conjecture on γ-vectors for
them;

(2) G.Denham and A.Suciu (2005) described 5 graphs, s.t. there

is a nontrivial triple Massey product of 3-dimensional classes in

H∗(ZP) i� one of these graphs is an induced subgraph in

sk1(∂P∗). All such products are decomposable.
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Triple Massey products in H∗(ZP)

The following result holds for triple Massey products in the

cohomology ring of ZP .

Theorem

Let P be a generalized associahedron of type A, B(C ), D, or

P = PΓ. Then there is a de�ned and nontrivial triple Massey

product 〈α1, α2, α3〉 of some classes αi ∈ H3(ZP), i = 1, 2, 3 if and

only if P is a generalized associahedron or a graph-associahedron

PΓ and in the graph Γ there is a connected component on

n + 1 = 4 vertices, di�erent from the complete graph K4. All such

Massey products are decomposable.

The face lattice allows us to reduce the general case to the case of

n = 3 and apply the result of Denham and Suciu.
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Example: generalized associahedron of type A or Stashe�
polytope, n = 3
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Example: generalized associahedron of type B (C) or
Bott-Taubes polytope, n = 3
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Massey operations and graph-associahedra

Any nestohedron on a connected building set can be obtained from

a simplex as a result of a truncation sequence of the simplex's faces

only.

Theorem

If P = Pen, n ≥ 2 and the classes αi ∈ H3(ZP), 1 ≤ i ≤ n + 1

are represented by (n + 1) pairs of the opposite permutohedra

facets, then 〈α1, . . . , αn+1〉 is de�ned and trivial;

If P = Stn, n ≥ 2 and the classes αi ∈ H3(ZP), 1 ≤ i ≤ n are

represented by n pairs of the opposite stellahedra facets, then

〈α1, . . . , αn〉 is de�ned and trivial.
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Example: 3-dimensional permutohedron
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Example: 3-dimensional stellahedron
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Massey operations and graph-associahedra

Example: n = 2

P = As2 is a 5-gon, ZP = (S3 × S4)#5 and the vanishing cup

product corresponds to 2 pairs of non-adjacent edges in a

5-gon.

P = Pe2 is a 6-gon,

ZP = (S3 × S5)#6#(S4 × S4)#8#(S5 × S3)#3 and the

vanishing triple Massey product corresponds to 3 pairs of

parallel edges in a regular 6-gon.
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Massey operations and 2-truncated cubes

We next consider a particular family of 2-truncated n-cubes P, one
for each dimension n, for which ZP has a nontrivial Massey product

of order n.

De�nition

Suppose I n is an n-dimensional cube with facets F1, . . . ,F2n, such
that Fi and Fn+i , 1 ≤ i ≤ n are parallel (do not intersect). Then

we de�ne P as a result of a consecutive cut of faces of codimension

2 from I n, having the following Stanley-Reisner ideal:

I = (v1vn+1, . . . , vnv2n, v1vn+2, . . . , vn−1v2n, . . . , v1v2n−1, v2v2n, . . .),

or, equivalently,

I = (vkvn+k+i , 0 ≤ i ≤ n − 2, 1 ≤ k ≤ n − i , . . .),

where vi correspond to Fi , 1 ≤ i ≤ 2n and in the last dots are the

monomials corresponding to the new facets.
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Massey operations and 2-truncated cubes

Remarks

For n = 2 we get a 2-dimensional cube (the square) and for

n = 3 we get a simple 3-polytope P with 8 facets giving a

nontrivial triple Massey product due to I.Baskakov result

(2003);

P is a �ag nestohedron: we can easily construct the building

set B for P on the vertex set S = [n + 1] by identifying Fi with
{1, . . . , i} for 1 ≤ i ≤ n and identifying Fi with {i − n + 1} for
n + 1 ≤ i ≤ 2n. Then we consecutively cut the following faces:

{1} t {3}, {1, 2} t {4}, . . . , {1, . . . , n − 1} t {n + 1}

· · ·

{1} t {n}, {1, 2} t {n + 1}.
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Massey operations and 2-truncated cubes

Remarks

Thus, P = PB for the building set B consisting of the building

set

B0 = {{i}n+1

1
, {1, 2}, {1, 2, 3}, . . . , [n + 1]}

of an n-cube, the above subsets in [n + 1] and all the subsets

in [n + 1] which are the unions of nontrivially intersecting

elements in B ;

P is not a graph-associahedron: its number of facets

f0(P) = n(n+3)
2
− 1 < f0(Asn) = n(n+3)

2
, thus we can apply the

lower and upper bounds for f-vectors of graph-associahedra

proved by Buchstaber and Volodin.
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Massey operations and 2-truncated cubes

Our main result on nontrivial higher Massey products for

moment-angle manifolds is the following.

Theorem

Suppose αi ∈ H3(ZP) is represented by a 3-dimensional cocycle

viun+i ∈ R−1,4(P) for 1 ≤ i ≤ n and n ≥ 2. Then the n-fold
Massey product 〈α1, . . . , αn〉 is de�ned and nontrivial.

Any element α = [a] ∈ 〈α1, . . . , αn〉 is s.t. a ∈ R∗(P) is a sum

of its multigraded components and

d : R−i ,2J(P) � R−(i−1),2J(P). Thus, a is a coboundary i�

each of its multigraded components is a coboundary;

For any such a ∈ R∗(P) its component in

R−(2n−2),2(1,...,1,0,...,0)(P) with 2n "1"'s is always represented

by the cocycle v1v2nu2u3 . . . u2n−1 (up to sign), which is not a

coboundary.
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Example: n = 3

IP = (v1v4, v2v5, v3v6, v1v5, v2v6, . . .).

Then for ai = viun+i we have (up to sign):

c1,3 = v1u2u4u5, c2,4 = v2u3u5u6, a = v1v6u2u3u4u5.

Thus, α = [a] = −[v1u4u5] · [v6u2u3].
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Massey operations and �ag nestohedra

Using the previous theorem, the following statement can be

obtained.

Theorem

There exists a �ag nestohedron P = PB , such that there are

nontrivial higher Massey products of any prescribed orders

n1, . . . , nr , r ≥ 2 in H∗(ZP).

Construction: substitution of building sets

Let B1, . . . ,Bn+1 be connected building sets on [k1], . . . , [kn+1].
Then, for every B on [n + 1], de�ne B ′ = B(B1, . . . ,Bn+1) on

[k1] t · · · t [kn+1], consisting of elements S i ∈ Bi and
⊔
i∈S

[ki ],

where S ∈ B . Then PB′ = PB × PB1
× · · · × PBn+1

.

We take P = PB , B = B ′(B1, . . . ,Br ), where Bs , 1 ≤ s ≤ r is a

building set for the corresponding P in the previous theorem and B ′

is a connected building set of a (r − 1)-dimensional cube.
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