On topology of toric spaces arising from 2-truncated cubes

Ivan Limonchenko ^{Fudan University} Shanghai, China ilimonchenko@gmail.com

The 43rd Symposium on Transformation Groups

November 18, 2016 Himeji, Japan

Theorem (M.Atiyah; V.Guillemin, S.Sternberg'82)

Let (M, ω) be a 2*d*-dimensional compact connected symplectic manifold with a hamiltonian action of a compact torus \mathbb{T}^n . Then the image of the moment map $\mu : M \to \mathbb{R}^n$ is a convex polytope P which is the convex hull of $\mu(M^{\mathbb{T}})$.

If d = n and the torus action is effective, then (M, ω) is a symplectic toric manifold.

Theorem (M.Atiyah; V.Guillemin, S.Sternberg'82)

Let (M, ω) be a 2*d*-dimensional compact connected symplectic manifold with a hamiltonian action of a compact torus \mathbb{T}^n . Then the image of the moment map $\mu : M \to \mathbb{R}^n$ is a convex polytope P which is the convex hull of $\mu(M^{\mathbb{T}})$.

If d = n and the torus action is effective, then (M, ω) is a symplectic toric manifold. A polytope P in \mathbb{R}^n is called Delzant if its normal fan is smooth.

Theorem (T.Delzant'88)

There is a 1-1 correspondence between compact symplectic toric manifolds (M, ω, μ) (up to equivariant symplectomorphism) and Delzant polytopes $\mu(M)$ (up to lattice isomorphism).

・ロト ・ 一日 ・ ・ 日 ・

Definition

Let P be a combinatorial simple polytope of dimension n. A *quasitoric manifold* over P is a smooth 2n-dimensional manifold M with a smooth action of the torus T^n satisfying the two conditions: (1) the action is locally standard; (2) there is a continuous projection $\pi : M \to P$ whose fibers are T^n -orbits.

Definition

Let P be a combinatorial simple polytope of dimension n. A quasitoric manifold over P is a smooth 2n-dimensional manifold M with a smooth action of the torus T^n satisfying the two conditions: (1) the action is locally standard; (2) there is a continuous projection $\pi : M \to P$ whose fibers are T^n -orbits.

Remarks

- (a) M/T is homeomorphic, as a manifold with corners, to the simple polytope P;
- (b) The action is free over the interior of P, the vertices of P correspond to the fixed points of the torus action on M;
- (c) A projective toric manifold is a quasitoric manifold.

・ロト ・ 一日 ・ ・ 日 ・

э

In the work of M.Davis and T.Januszkiewicz'91 the following construction appeared.

Definition

Suppose P^n is a combinatorial simple polytope with facets F_1, \ldots, F_m . Denote by T^{F_i} a 1-dimensional coordinate subgroup in $T^F \cong T^m$ for each $1 \le i \le m$ and $T^G = \prod T^{F_i} \subset T^F$ for a face $G = \cap F_i$ of a polytope P^n . Then the moment-angle manifold corresponding to P is a quotient space

$$\mathcal{Z}_P = T^F \times P^n / \sim,$$

where $(t_1, p) \sim (t_2, q)$ iff $p = q \in P$ and $t_1 t_2^{-1} \in T^{G(p)}$, G(p) is a minimal face of P which contains p = q.

Simple polytopes

Now consider simple convex n-dimensional polytopes P in the Euclidean space \mathbb{R}^n with scalar product \langle , \rangle .

Simple polytopes

Now consider simple convex n-dimensional polytopes P in the Euclidean space \mathbb{R}^n with scalar product \langle , \rangle . Such a polytope P can be defined as a bounded intersection of m halfspaces:

$$P = \big\{ \boldsymbol{x} \in \mathbb{R}^n \colon \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle + b_i \ge 0 \quad \text{for } i = 1, \dots, m \big\}, \qquad (*)$$

where $a_i \in \mathbb{R}^n$, $b_i \in \mathbb{R}$. We assume that the hyperplanes defined by the equations $\langle a_i, x \rangle + b_i = 0$ are in general position, that is, at most *n* of them meet at a single point. We also assume that there are no redundant inequalities in (*), that is, no inequality can be removed from (*) without changing *P*.

Then P has exactly m facets given by

$$F_i = \{ \mathbf{x} \in P \colon \langle \mathbf{a}_i, \mathbf{x} \rangle + b_i = 0 \}, \text{ for } i = 1, \dots, m.$$

▶ < Ξ ▶</p>

Then *P* has exactly *m* facets given by

$$F_i = \{ \mathbf{x} \in P \colon \langle \mathbf{a}_i, \mathbf{x} \rangle + b_i = 0 \}, \text{ for } i = 1, \dots, m.$$

Let A_P be the $m \times n$ matrix of row vectors a_i , and let b_P be the column vector of scalars $b_i \in \mathbb{R}$. Then we can write (*) as

$$P = \{ \boldsymbol{x} \in \mathbb{R}^n \colon A_P \boldsymbol{x} + \boldsymbol{b}_P \ge \boldsymbol{0} \},\$$

and consider the affine map

$$i_P \colon \mathbb{R}^n \to \mathbb{R}^m, \quad i_P(\mathbf{x}) = A_P \mathbf{x} + \mathbf{b}_P.$$

Then *P* has exactly *m* facets given by

$$F_i = \left\{ oldsymbol{x} \in P \colon \langle oldsymbol{a}_i, oldsymbol{x}
angle + b_i = 0
ight\}, ext{ for } i = 1, \dots, m.$$

Let A_P be the $m \times n$ matrix of row vectors a_i , and let b_P be the column vector of scalars $b_i \in \mathbb{R}$. Then we can write (*) as

$$P = \{ \boldsymbol{x} \in \mathbb{R}^n \colon A_P \boldsymbol{x} + \boldsymbol{b}_P \ge \boldsymbol{0} \},\$$

and consider the affine map

$$i_P \colon \mathbb{R}^n \to \mathbb{R}^m, \quad i_P(\mathbf{x}) = A_P \mathbf{x} + \mathbf{b}_P.$$

It embeds P into

$$\mathbb{R}^m_\geq = \{ \boldsymbol{y} \in \mathbb{R}^m \colon y_i \geq 0 \quad \text{for } i = 1, \dots, m \}.$$

Definition: V.Buchstaber and T.Panov (1998)

We define the space \mathcal{Z}_P from the commutative diagram

where $\mu(z_1, \ldots, z_m) = (|z_1|^2, \ldots, |z_m|^2)$. The latter map may be thought of as the quotient map for the coordinatewise action of the standard torus

$$\mathbb{T}^m = \{ z \in \mathbb{C}^m \colon |z_i| = 1 \quad \text{for } i = 1, \dots, m \}$$

on \mathbb{C}^m . Therefore, \mathbb{T}^m acts on \mathcal{Z}_P with quotient P, and i_Z is a \mathbb{T}^m -equivariant embedding.

Remarks

• If P_1 and P_2 are combinatorially equivalent, i.e. their face lattices are isomorphic, then Z_{P_1} and Z_{P_2} are homeomorphic. The opposite statement is **not** true (truncation polytopes);

Remarks

- If P_1 and P_2 are combinatorially equivalent, i.e. their face lattices are isomorphic, then Z_{P_1} and Z_{P_2} are homeomorphic. The opposite statement is **not** true (truncation polytopes);
- For any quasitoric manifold M²ⁿ → P over a simple polytope P there is a principal T^{m-n}-bundle Z_P → M²ⁿ, s.t. the composition Z_P → M²ⁿ → P is a projection onto the orbit space of the T^m-action on Z_P.

Examples

• 1) If $P = \Delta^n$ then $Z_P = S^{2n+1}$; 2) If $P = P_1 \times P_2$ then $Z_P = Z_{P_1} \times Z_{P_2}$

▲御▶ ▲理▶ ▲理▶ …

э

- 1) If $P = \Delta^n$ then $Z_P = S^{2n+1}$; 2) If $P = P_1 \times P_2$ then $Z_P = Z_{P_1} \times Z_{P_2}$
- Consider a prism $Pr_3 = vc^1(\Delta^3)$, $\mathcal{Z}_{Pr_3} = S^3 \times S^5$ and cut a vertical edge. We get a 3-cube *C*, for which $\mathcal{Z}_C = S^3 \times S^3 \times S^3$.

伺 と く ヨ と く ヨ と

1) If P = Δⁿ then Z_P = S²ⁿ⁺¹;
2) If P = P₁ × P₂ then Z_P = Z_{P1} × Z_{P2}
Consider a prism Pr₃ = vc¹(Δ³), Z_{Pr3} = S³ × S⁵ and cut a vertical edge. We get a 3-cube C, for which Z_C = S³ × S³ × S³. If we perform an edge truncation of C we get a 5-gonal prism Pr₅ and Z_{Pr5} = (S³ × S⁴)^{#5} × S³.

・ 同 ト ・ ヨ ト ・ ・ ヨ ト ……

- 1) If P = Δⁿ then Z_P = S²ⁿ⁺¹;
 2) If P = P₁ × P₂ then Z_P = Z_{P1} × Z_{P2}
 Consider a prism Pr₃ = vc¹(Δ³), Z_{Pr3} = S³ × S⁵ and cut a vertical edge. We get a 3-cube C, for which Z_C = S³ × S³ × S³. If we perform an edge truncation of C we get a 5-gonal prism Pr₅ and Z_{Pr5} = (S³ × S⁴)^{#5} × S³.
 Consider a 3 polytope P = vc¹(C). Then Z_P is not homotopy
- Consider a 3-polytope $P = vc^1(C)$. Then \mathcal{Z}_P is **not** homotopy equivalent to a connected sum of products of spheres.

イロト イポト イヨト イヨト 二日

The moment-angle functor \mathcal{Z} represents the homotopy type of \mathcal{Z}_P and the ring structure of $H^*(\mathcal{Z}_P; \Bbbk)$ as invariants of the combinatorial type (face lattice equivalence) of P. The moment-angle functor Z represents the homotopy type of Z_P and the ring structure of $H^*(Z_P; \mathbb{k})$ as invariants of the combinatorial type (face lattice equivalence) of P. Here we are mainly interested in the following problem:

Formality and higher Massey products for \mathcal{Z}_{P_1}

Determine the widest possible class of simple polytopes P s.t. there are nontrivial higher Massey operations in $H^*(\mathcal{Z}_P; \mathbb{Q})$, or more generally, \mathcal{Z}_P is not rationally formal. Formality means, that its Sullivan-de Rham algebra (A, d) of PL-forms with coefficients in \mathbb{Q} is formal in CDGA, i.e., there exists a zigzag of quasi-isomorphisms (weak equivalence) between (A, d) and its cohomology algebra $(H^*(\mathcal{Z}_P; \mathbb{Q}), 0)$.

・ロト ・ 同ト ・ ヨト ・ ヨト …

Motivation: formality

Examples

- spheres;
- H-spaces;
- symmetric spaces;
- compact connected Lie groups G and their classifying spaces BG;

Motivation: formality

Examples

- spheres;
- H-spaces;
- symmetric spaces;
- compact connected Lie groups G and their classifying spaces BG;
- compact K\u00e4hler manifolds (P.Deligne, Ph.Griffiths, J.Morgan, D.Sullivan'75) and, in particular, projective toric varieties;

Motivation: formality

Examples

- spheres;
- H-spaces;
- symmetric spaces;
- compact connected Lie groups G and their classifying spaces BG;
- compact K\u00e4hler manifolds (P.Deligne, Ph.Griffiths, J.Morgan, D.Sullivan'75) and, in particular, projective toric varieties;
- quasitoric manifolds (T.Panov, N.Ray'08).

- spheres;
- H-spaces;
- symmetric spaces;
- compact connected Lie groups G and their classifying spaces BG;
- compact Kähler manifolds (P.Deligne, Ph.Griffiths, J.Morgan, D.Sullivan'75) and, in particular, projective toric varieties;
- quasitoric manifolds (T.Panov, N.Ray'08).

Moreover, formality is preserved by wedges, direct products and connected sums.

Stanley-Reisner rings

Let k be a commutative ring with a unit and consider a (n-1)-dimensional simplicial complex K on the ordered set $[m] = \{1, \ldots, m\}$. Let $k[m] = k[v_1, \ldots, v_m]$ be the graded polynomial algebra on m variables, $\deg(v_i) = 2$.

(*) * (E) * (E) * (E)

Stanley-Reisner rings

Let k be a commutative ring with a unit and consider a (n-1)-dimensional simplicial complex K on the ordered set $[m] = \{1, \ldots, m\}$. Let $k[m] = k[v_1, \ldots, v_m]$ be the graded polynomial algebra on m variables, $\deg(v_i) = 2$.

Face rings

A face ring (or a Stanley-Reisner ring) of K is the quotient ring

$$\Bbbk[K] := \Bbbk[v_1, \ldots, v_m]/\mathcal{I}_K$$

where \mathcal{I}_{K} is the ideal generated by those square free monomials $v_{i_{1}} \cdots v_{i_{s}}$ for which $\{i_{1}, \ldots, i_{s}\}$ is **not** a simplex of K. We denote $\mathbb{k}[P] = \mathbb{k}[\partial P^{*}]$.

Note that $\mathbb{k}[K]$ is a module over $\mathbb{k}[v_1, \ldots, v_m]$ via the quotient projection.

< ロ > (同 > (回 > (回 >))) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) (回 >) (回 >)) [回 > (回 >)] [回 > (回 >)] [回 > (回 >)] [回 >)] [回 > (回 >)] [回 >)] [回 >)] [回 > (回 >)] [回 >)] [回 >)] [□ >] [□ >)] [□ >] [□ >]] [□ >)] [□ >]] [□ =]] [□ >]] [□ =]] [] [□ =]] []] []] []] []] []

Cohomology ring of \mathcal{Z}_P

The following result relates cohomology of Z_P to combinatorics of the polytope P:

Theorem (V.Buchstaber, T.Panov'98)

If we define a differential graded algebra $R(P) = \Lambda[u_1, \ldots, u_m] \otimes \mathbb{k}[P]/(v_i^2 = u_i v_i = 0, 1 \le i \le m)$ with bideg $u_i = (-1, 2)$, bideg $v_i = (0, 2)$; $du_i = v_i$, $dv_i = 0$, then:

$$H^{*,*}(\mathcal{Z}_P; \Bbbk) \cong H^{*,*}[R(P), d] \cong \operatorname{Tor}_{\Bbbk[v_1, \dots, v_m]}^{*,*}(\Bbbk[P], \Bbbk).$$

Cohomology ring of \mathcal{Z}_P

The following result relates cohomology of \mathcal{Z}_P to combinatorics of the polytope P:

Theorem (V.Buchstaber, T.Panov'98)

If we define a differential graded algebra $R(P) = \Lambda[u_1, \ldots, u_m] \otimes \mathbb{k}[P]/(v_i^2 = u_i v_i = 0, 1 \le i \le m)$ with bideg $u_i = (-1, 2)$, bideg $v_i = (0, 2)$; $du_i = v_i$, $dv_i = 0$, then:

$$H^{*,*}(\mathcal{Z}_P; \Bbbk) \cong H^{*,*}[R(P), d] \cong \operatorname{Tor}_{\Bbbk[v_1, \dots, v_m]}^{*,*}(\Bbbk[P], \Bbbk).$$

These algebras admit $\mathbb{N} \oplus \mathbb{Z}^m$ -multigrading and we have

$$\operatorname{Tor}_{\Bbbk[v_1,\ldots,v_m]}^{-i,2\mathbf{a}}(\Bbbk[P],\Bbbk) \cong H^{-i,2\mathbf{a}}(R(P),d),$$

where $\operatorname{Tor}_{\Bbbk[v_1,\ldots,v_m]}^{-i,2J}(\Bbbk[P],\Bbbk) \cong \widetilde{H}^{|J|-i-1}(P_J;\Bbbk)$ for $J \subset [m]$. Here we denote $P_J = \bigcup_{j \in J} F_j$. The multigraded component $\operatorname{Tor}_{\Bbbk[v_1,\ldots,v_m]}^{-i,2a}(\Bbbk[P],\Bbbk) = 0$, if **a** is not a (0,1)-vector of length m.

We now turn to a discussion of flag nestohedra.

Building set

Let $S = \{1, 2, ..., n + 1\}$, $n \ge 2$. A building set on S is a family of subsets $B = \{B_k \subseteq S\}$, such that: 1) $\{i\} \in B$ for all $1 \le i \le n + 1$; 2) if $B_i \cap B_j \ne \emptyset$, then $B_i \cup B_j \in B$.

We now turn to a discussion of flag nestohedra.

Building set

Let $S = \{1, 2, ..., n + 1\}$, $n \ge 2$. A building set on S is a family of subsets $B = \{B_k \subseteq S\}$, such that: 1) $\{i\} \in B$ for all $1 \le i \le n + 1$; 2) if $B_i \cap B_j \ne \emptyset$, then $B_i \cup B_j \in B$.

Nestohedra

Nestohedron is a simple convex *n*-dimensional polytope $P_B = \sum_{B_k \in B} \Delta_{B_k}$, where $\Delta_{B_k} = \operatorname{conv} \{e_j | j \in B_k\} \subset \mathbb{R}^{n+1}$.

We now turn to a discussion of flag nestohedra.

Building set

Let $S = \{1, 2, ..., n + 1\}$, $n \ge 2$. A building set on S is a family of subsets $B = \{B_k \subseteq S\}$, such that: 1) $\{i\} \in B$ for all $1 \le i \le n + 1$; 2) if $B_i \cap B_j \ne \emptyset$, then $B_i \cup B_j \in B$.

Nestohedra

Nestohedron is a simple convex *n*-dimensional polytope $P_B = \sum_{B_k \in B} \Delta_{B_k}$, where $\Delta_{B_k} = \operatorname{conv} \{e_j | j \in B_k\} \subset \mathbb{R}^{n+1}$.

Example: graph-associahedra

A graphical building set $B(\Gamma)$ for a graph Γ on the vertex set S consists of such B_k that Γ_{B_k} is a **connected subgraph** of Γ . Then $P_{\Gamma} = P_{B(\Gamma)}$ is called a graph-associahedron.

Graph-associahedra were first introduced by M.Carr and S.Devadoss (2006) in their study of Coxeter complexes.

Examples

- Γ is a complete graph on [n + 1]. Then $P_{\Gamma} = Pe^{n}$ is a **permutohedron**.
- Γ is a stellar graph on [n+1]. Then $P_{\Gamma} = St^n$ is a stellahedron.
- Γ is a cycle graph on [n + 1].
 Then P_Γ = Cyⁿ is a cyclohedron (or Bott-Taubes polytope).
- Γ is a chain graph on [n + 1]. Then $P_{\Gamma} = As^n$ is an **associahedron** (or Stasheff polytope).

Graph-associahedra were first introduced by M.Carr and S.Devadoss (2006) in their study of Coxeter complexes.

Examples

- Γ is a complete graph on [n + 1]. Then $P_{\Gamma} = Pe^{n}$ is a **permutohedron**.
- Γ is a stellar graph on [n+1]. Then $P_{\Gamma} = St^n$ is a stellahedron.
- Γ is a cycle graph on [n + 1]. Then $P_{\Gamma} = Cy^n$ is a **cyclohedron** (or Bott-Taubes polytope).
- Γ is a chain graph on [n + 1]. Then $P_{\Gamma} = As^n$ is an **associahedron** (or Stasheff polytope).

Graph-associahedra are *flag* polytopes, i.e. if a number of facets has an **empty** intersection then some pair of these facets has an **empty** intersection. Moreover, they are Delzant polytopes (all nestohedra are, due to the result of A.Zelevinsky).

500

In order to work with combinatorial types of graph-associahedra we should describe the structure of their face lattices.

Face poset

Facets of P_{Γ} are in 1-1 correspondence with **non** maximal connected subgraphs of Γ .

Moreover, a set of facets corresponding to such subgraphs Γ_{i} because parameter intersection if and only if:

 $\Gamma_{i_1}, \ldots, \Gamma_{i_s}$ has a **nonempty** intersection if and only if:

- (1) For any two subgraphs Γ_{i_k} , Γ_{i_l} , either they do not have a common vertex or one is a subgraph of another;
- (2) If any two of the subgraphs $\Gamma_{i_{k_1}}, \ldots, \Gamma_{i_{k_l}}, l \ge 2$ do not have common vertices, then their union graph is disconnected.

・ 同 ト ・ ヨ ト ・ ヨ ト …

In order to work with combinatorial types of graph-associahedra we should describe the structure of their face lattices.

Face poset

Facets of P_{Γ} are in 1-1 correspondence with **non** maximal connected subgraphs of Γ .

Moreover, a set of facets corresponding to such subgraphs $\Gamma_{i_1}, \ldots, \Gamma_{i_n}$ has a **nonempty** intersection if and only if:

- (1) For any two subgraphs Γ_{i_k} , Γ_{i_l} , either they do not have a common vertex or one is a subgraph of another;
- (2) If any two of the subgraphs $\Gamma_{i_{k_1}}, \ldots, \Gamma_{i_{k_l}}, l \ge 2$ do not have common vertices, then their union graph is disconnected.
 - If P = Peⁿ then its facets F₁ ∩ F₂ ≠ Ø if and only if the corresponding Γ₁ and Γ₂ are subgraphs of one another;
 - If $\Gamma_i, 1 \leq i \leq r$ are connected components of Γ then $P_{\Gamma} = P_{\Gamma_1} \times \ldots \times P_{\Gamma_r}.$

Definition: special subgraphs in a graph

1) Suppose Γ is a graph. For any of its connected subgraphs γ one can compute the number $i(\gamma)$ of such connected subraphs $\tilde{\gamma}$ in Γ that either

$$\gamma \cap \tilde{\gamma} \neq \varnothing, \gamma, \tilde{\gamma}$$

or

$$\gamma \cap \tilde{\gamma} = \varnothing,$$

and $\gamma \sqcup \tilde{\gamma}$ is a connected subgraph in Γ .

Definition: special subgraphs in a graph

1) Suppose Γ is a graph. For any of its connected subgraphs γ one can compute the number $i(\gamma)$ of such connected subraphs $\tilde{\gamma}$ in Γ that either

$$\gamma \cap \tilde{\gamma} \neq \varnothing, \gamma, \tilde{\gamma}$$

or

$$\gamma \cap \tilde{\gamma} = \varnothing,$$

and $\gamma \sqcup \tilde{\gamma}$ is a connected subgraph in Γ . 2) We denote by $i_{max} = i_{max}(\Gamma)$ the maximal value of $i(\gamma)$ over all connected subgraphs γ in Γ . A connected subgraph γ , on which i_{max} is achieved, will be called a **special subgraph**.

Using the face poset structure of P_{Γ} we get the following result:

Theorem

Let $P = P_{\Gamma}$ be a graph-associahedron of dimension $n \ge 3$ for a connected graph Γ . Then for $i > i_{max}$:

$$\beta^{-i,2(i+1)}(P) = 0.$$

Denote the number of special subgraphs in Γ by s. Then

$$\beta^{-i_{max},2(i_{max}+1)}(P) = s$$

For the 4 classical series of graph-associahedra the theorem gives the following values of i_{max} and s.

Associahedron

$$\beta^{-q,2(q+1)}(P) = \begin{cases} n+3, & \text{if } n \text{ is even};\\ \frac{n+3}{2}, & \text{if } n \text{ is odd}; \end{cases}$$
$$\beta^{-i,2(i+1)}(P) = 0 \quad \text{for } i \ge q+1,$$

where q = q(n) is:

$$q=q(n)=egin{cases} rac{n(n+2)}{4}, & ext{if }n ext{ is even};\ rac{(n+1)^2}{4}, & ext{if }n ext{ is odd}. \end{cases}$$

Cyclohedron

$$\beta^{-q,2(q+1)}(P) = \begin{cases} 2n+2, & \text{if } n \text{ is even};\\ n+1, & \text{if } n \text{ is odd}; \end{cases}$$
$$\beta^{-i,2(i+1)}(P) = 0 \quad \text{for } i \ge q+1,$$

where q = q(n) is:

$$q = q(n) = \begin{cases} rac{n(n+2)-2}{2}, & ext{if } n ext{ is even}; \\ rac{(n+1)^2-2}{2}, & ext{if } n ext{ is odd}. \end{cases}$$

▲□→ ▲ 国 → ▲ 国 → …

э

Bigraded Betti numbers: examples

Permutohedron

$$\beta^{-q,2(q+1)}(P) = \binom{n+1}{\left\lfloor \frac{n+1}{2} \right\rfloor}$$
$$\beta^{-i,2(i+1)}(P) = 0 \quad \text{for } i \ge q+1,$$

where
$$q = q(n) = 2^{n+1} - 2^{\left[\frac{n+1}{2}\right]} - 2^{\left[\frac{n+2}{2}\right]} + 1$$

Stellahedron

$$\beta^{-q,2(q+1)}(P) = \binom{n}{\left[\frac{n}{2}\right]}$$
$$\beta^{-i,2(i+1)}(P) = 0 \quad \text{for } i \ge q+1,$$

where $q = q(n) = 2^n - 2^{\left[\frac{n}{2}\right]} - 2^{\left[\frac{n+1}{2}\right]} + \left[\frac{n+3}{2}\right]$.

Pontryagin algebra $H_*(\Omega \mathcal{Z}_P)$

Bigraded Betti numbers of the type $\beta^{-i,2(i+1)}(P)$ have another topological application by means of the following result.

Loop homology of moment-angle-manifolds

J.Grbić, T.Panov, S.Theriault, J.Wu (2012) proved that $\sum_{i=1}^{m-n} \beta^{-i,2(i+1)}(P) \text{ equals the minimal number of multiplicative}$ generators of the Pontryagin algebra $H_*(\Omega \mathcal{Z}_P; \Bbbk)$ for any flag simple polytope P.

Pontryagin algebra $H_*(\Omega \mathcal{Z}_P)$

Bigraded Betti numbers of the type $\beta^{-i,2(i+1)}(P)$ have another topological application by means of the following result.

Loop homology of moment-angle-manifolds

J.Grbić, T.Panov, S.Theriault, J.Wu (2012) proved that $\sum_{i=1}^{m-n} \beta^{-i,2(i+1)}(P) \text{ equals the minimal number of multiplicative}$ generators of the Pontryagin algebra $H_*(\Omega \mathbb{Z}_P; \mathbb{k})$ for any flag simple polytope P.

Remark: torsion in cohomology

Consider the principal \mathbb{T}^{m-n} -bundle $\mathcal{Z}_P \to M_P$ for $P^n = P_{\Gamma}$. For $P = Pe^n$ and $n \ge 5$ $H^*(\mathcal{Z}_P)$ may have an arbitrary finite group as a direct summand. On the other hand, due to Danilov-Jurkiewicz theorem, $H^*(M_P)$ is always free.

-

Massey k-products in $H^*[A, d]$

Defining system

Suppose
$$(A, d)$$
 is a dga, $\alpha_i = [a_i] \in H^*[A, d]$ and $a_i \in A^{n_i}$ for
 $1 \le i \le k$. Then a *defining system* for $(\alpha_1, \ldots, \alpha_k)$ is a
 $(k+1) \times (k+1)$ -matrix C , s.t. the following conditions hold:
(1) $c_{i,j} = 0$, if $i \ge j$,
(2) $c_{i,i+1} = a_i$,
(3) $a \cdot E_{1,k+1} = dC - \overline{C} \cdot C$ for some $a = a(C) \in A$, where
 $\overline{c}_{i,j} = (-1)^{degc_{i,j}} \cdot c_{i,j}$.

This implies: d(a) = 0 and $a \in A^m$, $m = n_1 + \ldots + n_k - k + 2$.

э

Massey k-products in $H^*[A, d]$

Defining system

Suppose
$$(A, d)$$
 is a dga, $\alpha_i = [a_i] \in H^*[A, d]$ and $a_i \in A^{n_i}$ for
 $1 \le i \le k$. Then a *defining system* for $(\alpha_1, \dots, \alpha_k)$ is a
 $(k+1) \times (k+1)$ -matrix C , s.t. the following conditions hold:
(1) $c_{i,j} = 0$, if $i \ge j$,
(2) $c_{i,i+1} = a_i$,
(3) $a \cdot E_{1,k+1} = dC - \overline{C} \cdot C$ for some $a = a(C) \in A$, where
 $\overline{c}_{i,j} = (-1)^{degc_{i,j}} \cdot c_{i,j}$.

This implies: d(a) = 0 and $a \in A^m$, $m = n_1 + \ldots + n_k - k + 2$.

Definition

A Massey k-product $\langle \alpha_1, \ldots, \alpha_k \rangle$ is said to be defined, if there exists a defining system C for it. If so, this Massey product consists of all $\alpha = [a(C)]$ for each defining system C. It is called *trivial*, if [a(C)] = 0 for some C.

k=2

If $\langle \alpha_1, \alpha_2 \rangle$ is defined, then we have:

$$a=d(c_{1,3})-\bar{a}_1\cdot a_2.$$

k=3

If $\langle \alpha_1, \alpha_2, \alpha_3 \rangle$ is defined, then we have:

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

k=4

If $\langle \alpha_1, \alpha_2, \alpha_3, \alpha_4 \rangle$ is defined, then we have:

$$a = d(c_{1,5}) - \bar{a}_1 \cdot c_{2,5} - \bar{c}_{1,3} \cdot c_{3,5} - \bar{c}_{1,4} \cdot a_4,$$

$$egin{array}{rll} d(c_{1,3}) &=& ar{a}_1 \cdot a_2, \ d(c_{1,4}) &=& ar{a}_1 \cdot c_{2,4} + ar{c}_{1,3} \cdot a_3, \ d(c_{2,4}) &=& ar{a}_2 \cdot a_3, \ d(c_{2,5}) &=& ar{a}_2 \cdot c_{3,5} + ar{c}_{2,4} \cdot a_4, \ d(c_{3,5}) &=& ar{a}_3 \cdot a_4. \end{array}$$

→ < Ξ → <</p>

э

Remarks

 V.Buchstaber and V.Volodin (2011) constructed realizations of all flag nestohedra as 2-truncated cubes, i.e. a result of a sequence of truncations of codimension 2 faces only, starting with a cube, and proved the Gal conjecture on γ-vectors for them;

Remarks

- (1) V.Buchstaber and V.Volodin (2011) constructed realizations of all flag nestohedra as 2-truncated cubes, i.e. a result of a sequence of truncations of codimension 2 faces only, starting with a cube, and proved the Gal conjecture on γ -vectors for them;
- (2) G.Denham and A.Suciu (2005) described 5 graphs, s.t. there is a nontrivial triple Massey product of 3-dimensional classes in H*(Z_P) iff one of these graphs is an induced subgraph in sk¹(∂P*). All such products are decomposable.

・ロト ・ 同ト ・ ヨト ・ ヨト …

The following result holds for triple Massey products in the cohomology ring of Z_P .

Theorem

Let P be a generalized associahedron of type A, B(C), D, or $P = P_{\Gamma}$. Then there is a defined and nontrivial triple Massey product $\langle \alpha_1, \alpha_2, \alpha_3 \rangle$ of some classes $\alpha_i \in H^3(\mathcal{Z}_P)$, i = 1, 2, 3 if and only if P is a generalized associahedron or a graph-associahedron P_{Γ} and in the graph Γ there is a connected component on n + 1 = 4 vertices, different from the complete graph K_4 . All such Massey products are decomposable.

The following result holds for triple Massey products in the cohomology ring of \mathcal{Z}_P .

Theorem

Let P be a generalized associahedron of type A, B(C), D, or $P = P_{\Gamma}$. Then there is a defined and nontrivial triple Massey product $\langle \alpha_1, \alpha_2, \alpha_3 \rangle$ of some classes $\alpha_i \in H^3(\mathcal{Z}_P)$, i = 1, 2, 3 if and only if P is a generalized associahedron or a graph-associahedron P_{Γ} and in the graph Γ there is a connected component on n + 1 = 4 vertices, different from the complete graph K_4 . All such Massey products are decomposable.

The face lattice allows us to reduce the general case to the case of n = 3 and apply the result of Denham and Suciu.

ヘロト 人間ト ヘヨト ヘヨト

Example: generalized associahedron of type A or Stasheff polytope, n = 3

Example: generalized associahedron of type B (C) or Bott-Taubes polytope, n = 3

Any nestohedron on a connected building set can be obtained from a simplex as a result of a truncation sequence of the simplex's faces only.

Theorem

- If $P = Pe^n$, $n \ge 2$ and the classes $\alpha_i \in H^3(\mathbb{Z}_P)$, $1 \le i \le n+1$ are represented by (n+1) pairs of the opposite permutohedra facets, then $\langle \alpha_1, \ldots, \alpha_{n+1} \rangle$ is defined and trivial;
- If P = Stⁿ, n ≥ 2 and the classes α_i ∈ H³(Z_P), 1 ≤ i ≤ n are represented by n pairs of the opposite stellahedra facets, then (α₁,..., α_n) is defined and trivial.

(1日) (日) (日)

Example: 3-dimensional permutohedron

Example: 3-dimensional stellahedron

Example: n = 2

• $P = As^2$ is a 5-gon, $Z_P = (S^3 \times S^4)^{\#5}$ and the vanishing cup product corresponds to 2 pairs of non-adjacent edges in a 5-gon.

•
$$P = Pe^2$$
 is a 6-gon,
 $Z_P = (S^3 \times S^5)^{\#6} \# (S^4 \times S^4)^{\#8} \# (S^5 \times S^3)^{\#3}$ and the
vanishing triple Massey product corresponds to 3 pairs of
parallel edges in a regular 6-gon.

We next consider a particular family of 2-truncated *n*-cubes \mathcal{P} , one for each dimension *n*, for which $\mathcal{Z}_{\mathcal{P}}$ has a nontrivial Massey product of order *n*.

Definition

Suppose I^n is an *n*-dimensional cube with facets F_1, \ldots, F_{2n} , such that F_i and F_{n+i} , $1 \le i \le n$ are parallel (do not intersect). Then we define \mathcal{P} as a result of a consecutive cut of faces of codimension 2 from I^n , having the following Stanley-Reisner ideal:

$$I = (v_1 v_{n+1}, \dots, v_n v_{2n}, v_1 v_{n+2}, \dots, v_{n-1} v_{2n}, \dots, v_1 v_{2n-1}, v_2 v_{2n}, \dots)$$

or, equivalently,

$$I = (v_k v_{n+k+i}, 0 \le i \le n-2, 1 \le k \le n-i, \ldots),$$

where v_i correspond to F_i , $1 \le i \le 2n$ and in the last dots are the monomials corresponding to the new facets.

Remarks

 For n = 2 we get a 2-dimensional cube (the square) and for n = 3 we get a simple 3-polytope P with 8 facets giving a nontrivial triple Massey product due to I.Baskakov result (2003);

Remarks

- For n = 2 we get a 2-dimensional cube (the square) and for n = 3 we get a simple 3-polytope P with 8 facets giving a nontrivial triple Massey product due to I.Baskakov result (2003);
- \mathcal{P} is a flag nestohedron: we can easily construct the building set B for \mathcal{P} on the vertex set S = [n+1] by identifying F_i with $\{1, \ldots, i\}$ for $1 \le i \le n$ and identifying F_i with $\{i - n + 1\}$ for $n+1 \le i \le 2n$. Then we consecutively cut the following faces:

$$\{1\} \sqcup \{3\}, \{1,2\} \sqcup \{4\}, \ldots, \{1, \ldots, n-1\} \sqcup \{n+1\}$$

$$\{1\} \sqcup \{n\}, \{1,2\} \sqcup \{n+1\}.$$

. . .

Remarks

• Thus, $\mathcal{P} = P_B$ for the building set *B* consisting of the building set

$$B_0 = \{\{i\}_1^{n+1}, \{1,2\}, \{1,2,3\}, \dots, [n+1]\}$$

of an *n*-cube, the above subsets in [n + 1] and all the subsets in [n + 1] which are the unions of nontrivially intersecting elements in *B*;

Remarks

• Thus, $\mathcal{P} = P_B$ for the building set B consisting of the building set

$$B_0 = \{\{i\}_1^{n+1}, \{1,2\}, \{1,2,3\}, \dots, [n+1]\}$$

of an *n*-cube, the above subsets in [n + 1] and all the subsets in [n + 1] which are the unions of nontrivially intersecting elements in *B*;

• \mathcal{P} is not a graph-associahedron: its number of facets $f_0(\mathcal{P}) = \frac{n(n+3)}{2} - 1 < f_0(As^n) = \frac{n(n+3)}{2}$, thus we can apply the lower and upper bounds for f-vectors of graph-associahedra proved by Buchstaber and Volodin.

Our main result on nontrivial higher Massey products for moment-angle manifolds is the following.

Theorem

Suppose $\alpha_i \in H^3(\mathcal{Z}_{\mathcal{P}})$ is represented by a 3-dimensional cocycle $v_i u_{n+i} \in R^{-1,4}(\mathcal{P})$ for $1 \leq i \leq n$ and $n \geq 2$. Then the *n*-fold Massey product $\langle \alpha_1, \ldots, \alpha_n \rangle$ is defined and nontrivial.

Our main result on nontrivial higher Massey products for moment-angle manifolds is the following.

Theorem

Suppose $\alpha_i \in H^3(\mathcal{Z}_{\mathcal{P}})$ is represented by a 3-dimensional cocycle $v_i u_{n+i} \in R^{-1,4}(\mathcal{P})$ for $1 \leq i \leq n$ and $n \geq 2$. Then the *n*-fold Massey product $\langle \alpha_1, \ldots, \alpha_n \rangle$ is defined and nontrivial.

- Any element α = [a] ∈ ⟨α₁,..., α_n⟩ is s.t. a ∈ R*(P) is a sum of its multigraded components and d : R^{-i,2J}(P) → R^{-(i-1),2J}(P). Thus, a is a coboundary iff each of its multigraded components is a coboundary;
- For any such $a \in R^*(\mathcal{P})$ its component in $R^{-(2n-2),2(1,\ldots,1,0,\ldots,0)}(\mathcal{P})$ with 2n "1"'s is always represented by the cocycle $v_1v_{2n}u_2u_3\ldots u_{2n-1}$ (up to sign), which is not a coboundary.

< ロ > (同 > (回 > (回 >))) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) 目 = (回 > (回 >)) (回 >) (回 >)) = (回 > (回 >)) (回 >) (回 >)) = ((\Pi >)) (((\Pi >))) (((\Pi >))) ((((\Pi >))

$$I_P = (v_1 v_4, v_2 v_5, v_3 v_6, v_1 v_5, v_2 v_6, \ldots).$$

Then for $a_i = v_i u_{n+i}$ we have (up to sign):

 $c_{1,3} = v_1 u_2 u_4 u_5, c_{2,4} = v_2 u_3 u_5 u_6, a = v_1 v_6 u_2 u_3 u_4 u_5.$

Thus, $\alpha = [a] = -[v_1 u_4 u_5] \cdot [v_6 u_2 u_3]$. Van Limonchenko On topology of toric spaces arising from 2-truncated cubes

Massey operations and flag nestohedra

Using the previous theorem, the following statement can be obtained.

Theorem

There exists a flag nestohedron $P = P_B$, such that there are nontrivial higher Massey products of any prescribed orders $n_1, \ldots, n_r, r \ge 2$ in $H^*(\mathbb{Z}_P)$.

Massey operations and flag nestohedra

Using the previous theorem, the following statement can be obtained.

Theorem

There exists a flag nestohedron $P = P_B$, such that there are nontrivial higher Massey products of any prescribed orders $n_1, \ldots, n_r, r \ge 2$ in $H^*(\mathbb{Z}_P)$.

Construction: substitution of building sets

Let B_1, \ldots, B_{n+1} be connected building sets on $[k_1], \ldots, [k_{n+1}]$. Then, for every B on [n+1], define $B' = B(B_1, \ldots, B_{n+1})$ on $[k_1] \sqcup \cdots \sqcup [k_{n+1}]$, consisting of elements $S^i \in B_i$ and $\bigsqcup_{i \in S} [k_i]$, where $S \in B$. Then $P_{B'} = P_B \times P_{B_1} \times \cdots \times P_{B_{n+1}}$.

We take $P = P_B$, $B = B'(B_1, \ldots, B_r)$, where $B_s, 1 \le s \le r$ is a building set for the corresponding \mathcal{P} in the previous theorem and B' is a connected building set of a (r-1)-dimensional cube.

THANK YOU FOR YOUR ATTENTION!

Ivan Limonchenko On topology of toric spaces arising from 2-truncated cubes

・ロト ・聞 ト ・ ヨト ・ ヨトー

э