On topology of toric spaces arising from 2-truncated cubes

Ivan Limonchenko

Fudan University
Shanghai, China
ilimonchenko@gmail.com

The 43rd Symposium on Transformation Groups
November 18, 2016
Himeji, Japan

Toric varieties

Theorem (M.Atiyah; V.Guillemin, S.Sternberg'82)

Let (M, ω) be a $2 d$-dimensional compact connected symplectic manifold with a hamiltonian action of a compact torus \mathbb{T}^{n}. Then the image of the moment map $\mu: M \rightarrow \mathbb{R}^{n}$ is a convex polytope P which is the convex hull of $\mu\left(M^{\mathbb{T}}\right)$.

If $d=n$ and the torus action is effective, then (M, ω) is a symplectic toric manifold.

Toric varieties

Theorem (M.Atiyah; V.Guillemin, S.Sternberg'82)

Let (M, ω) be a $2 d$-dimensional compact connected symplectic manifold with a hamiltonian action of a compact torus \mathbb{T}^{n}. Then the image of the moment map $\mu: M \rightarrow \mathbb{R}^{n}$ is a convex polytope P which is the convex hull of $\mu\left(M^{\mathbb{T}}\right)$.

If $d=n$ and the torus action is effective, then (M, ω) is a symplectic toric manifold.
A polytope P in \mathbb{R}^{n} is called Delzant if its normal fan is smooth.

Theorem (T.Delzant' 88)

There is a 1-1 correspondence between compact symplectic toric manifolds (M, ω, μ) (up to equivariant symplectomorphism) and Delzant polytopes $\mu(M)$ (up to lattice isomorphism).

Quasitoric manifolds

Definition

Let P be a combinatorial simple polytope of dimension n. A quasitoric manifold over P is a smooth $2 n$-dimensional manifold M with a smooth action of the torus T^{n} satisfying the two conditions:
(1) the action is locally standard;
(2) there is a continuous projection $\pi: M \rightarrow P$ whose fibers are T^{n}-orbits.

Quasitoric manifolds

Definition

Let P be a combinatorial simple polytope of dimension n. A quasitoric manifold over P is a smooth $2 n$-dimensional manifold M with a smooth action of the torus T^{n} satisfying the two conditions:
(1) the action is locally standard;
(2) there is a continuous projection $\pi: M \rightarrow P$ whose fibers are T^{n}-orbits.

Remarks

(a) M / T is homeomorphic, as a manifold with corners, to the simple polytope P;
(b) The action is free over the interior of P, the vertices of P correspond to the fixed points of the torus action on M;
(c) A projective toric manifold is a quasitoric manifold.

A moment-angle manifold \mathcal{Z}_{P}

In the work of M.Davis and T.Januszkiewicz'91 the following construction appeared.

Definition

Suppose P^{n} is a combinatorial simple polytope with facets F_{1}, \ldots, F_{m}. Denote by $T^{F_{i}}$ a 1-dimensional coordinate subgroup in $T^{F} \cong T^{m}$ for each $1 \leq i \leq m$ and $T^{G}=\prod T^{F_{i}} \subset T^{F}$ for a face $G=\cap F_{i}$ of a polytope P^{n}. Then the moment-angle manifold corresponding to P is a quotient space

$$
\mathcal{Z}_{P}=T^{F} \times P^{n} / \sim,
$$

where $\left(t_{1}, p\right) \sim\left(t_{2}, q\right)$ iff $p=q \in P$ and $t_{1} t_{2}^{-1} \in T^{G(p)}, G(p)$ is a minimal face of P which contains $p=q$.

A moment-angle manifold \mathcal{Z}_{P}

Simple polytopes

Now consider simple convex n-dimensional polytopes P in the Euclidean space \mathbb{R}^{n} with scalar product \langle,$\rangle .$

A moment-angle manifold \mathcal{Z}_{P}

Simple polytopes

Now consider simple convex n-dimensional polytopes P in the Euclidean space \mathbb{R}^{n} with scalar product \langle,$\rangle .$
Such a polytope P can be defined as a bounded intersection of m halfspaces:

$$
\begin{equation*}
P=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\left\langle\boldsymbol{a}_{i}, \boldsymbol{x}\right\rangle+b_{i} \geq 0 \quad \text { for } i=1, \ldots, m\right\} \tag{*}
\end{equation*}
$$

where $\boldsymbol{a}_{i} \in \mathbb{R}^{n}, b_{i} \in \mathbb{R}$. We assume that the hyperplanes defined by the equations $\left\langle\boldsymbol{a}_{i}, \boldsymbol{x}\right\rangle+b_{i}=0$ are in general position, that is, at most n of them meet at a single point. We also assume that there are no redundant inequalities in (*), that is, no inequality can be removed from $(*)$ without changing P.

A moment-angle manifold \mathcal{Z}_{P}

Then P has exactly m facets given by

$$
F_{i}=\left\{\boldsymbol{x} \in P:\left\langle\boldsymbol{a}_{i}, \boldsymbol{x}\right\rangle+b_{i}=0\right\}, \quad \text { for } i=1, \ldots, m
$$

A moment-angle manifold \mathcal{Z}_{P}

Then P has exactly m facets given by

$$
F_{i}=\left\{\boldsymbol{x} \in P:\left\langle\boldsymbol{a}_{i}, \boldsymbol{x}\right\rangle+b_{i}=0\right\}, \quad \text { for } i=1, \ldots, m
$$

Let A_{P} be the $m \times n$ matrix of row vectors \boldsymbol{a}_{i}, and let \boldsymbol{b}_{P} be the column vector of scalars $b_{i} \in \mathbb{R}$. Then we can write $(*)$ as

$$
P=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: A_{P} \boldsymbol{x}+\boldsymbol{b}_{P} \geq \mathbf{0}\right\}
$$

and consider the affine map

$$
i_{P}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \quad i_{P}(\boldsymbol{x})=A_{P} \boldsymbol{x}+\boldsymbol{b}_{P}
$$

A moment-angle manifold \mathcal{Z}_{P}

Then P has exactly m facets given by

$$
F_{i}=\left\{\boldsymbol{x} \in P:\left\langle\boldsymbol{a}_{i}, \boldsymbol{x}\right\rangle+b_{i}=0\right\}, \quad \text { for } i=1, \ldots, m .
$$

Let A_{P} be the $m \times n$ matrix of row vectors \boldsymbol{a}_{i}, and let \boldsymbol{b}_{P} be the column vector of scalars $b_{i} \in \mathbb{R}$. Then we can write ($*$) as

$$
P=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: A_{P} \boldsymbol{x}+\boldsymbol{b}_{P} \geq \mathbf{0}\right\}
$$

and consider the affine map

$$
i_{P}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \quad i_{P}(\boldsymbol{x})=A_{P} \boldsymbol{x}+\boldsymbol{b}_{P}
$$

It embeds P into

$$
\mathbb{R}_{\geq}^{m}=\left\{\boldsymbol{y} \in \mathbb{R}^{m}: y_{i} \geq 0 \quad \text { for } i=1, \ldots, m\right\}
$$

A moment-angle manifold \mathcal{Z}_{P}

Definition: V.Buchstaber and T.Panov (1998)

We define the space \mathcal{Z}_{P} from the commutative diagram

$$
\begin{array}{rrr}
\mathcal{Z}_{P} & \xrightarrow{i_{Z}} & \mathbb{C}^{m} \\
\downarrow & & \downarrow^{\mu} \\
P & \xrightarrow{i_{P}} & \mathbb{R}_{\geq}^{m}
\end{array}
$$

where $\mu\left(z_{1}, \ldots, z_{m}\right)=\left(\left|z_{1}\right|^{2}, \ldots,\left|z_{m}\right|^{2}\right)$. The latter map may be thought of as the quotient map for the coordinatewise action of the standard torus

$$
\mathbb{T}^{m}=\left\{z \in \mathbb{C}^{m}:\left|z_{i}\right|=1 \quad \text { for } i=1, \ldots, m\right\}
$$

on \mathbb{C}^{m}. Therefore, \mathbb{T}^{m} acts on \mathcal{Z}_{P} with quotient P, and i_{Z} is a \mathbb{T}^{m}-equivariant embedding.

A moment-angle manifold \mathcal{Z}_{P}

Remarks

- If P_{1} and P_{2} are combinatorially equivalent, i.e. their face lattices are isomorphic, then $\mathcal{Z}_{P_{1}}$ and $\mathcal{Z}_{P_{2}}$ are homeomorphic. The opposite statement is not true (truncation polytopes);

A moment-angle manifold \mathcal{Z}_{P}

Remarks

- If P_{1} and P_{2} are combinatorially equivalent, i.e. their face lattices are isomorphic, then $\mathcal{Z}_{P_{1}}$ and $\mathcal{Z}_{P_{2}}$ are homeomorphic. The opposite statement is not true (truncation polytopes);
- For any quasitoric manifold $M^{2 n} \rightarrow P$ over a simple polytope P there is a principal T^{m-n}-bundle $\mathcal{Z}_{P} \rightarrow M^{2 n}$, s.t. the composition $\mathcal{Z}_{P} \rightarrow M^{2 n} \rightarrow P$ is a projection onto the orbit space of the T^{m}-action on \mathcal{Z}_{P}.

A moment-angle manifold \mathcal{Z}_{P}

Examples

- 1) If $P=\Delta^{n}$ then $\mathcal{Z}_{P}=S^{2 n+1}$;

2) If $P=P_{1} \times P_{2}$ then $\mathcal{Z}_{P}=\mathcal{Z}_{P_{1}} \times \mathcal{Z}_{P_{2}}$

A moment-angle manifold \mathcal{Z}_{P}

Examples

- 1) If $P=\Delta^{n}$ then $\mathcal{Z}_{P}=S^{2 n+1}$;

2) If $P=P_{1} \times P_{2}$ then $\mathcal{Z}_{P}=\mathcal{Z}_{P_{1}} \times \mathcal{Z}_{P_{2}}$

- Consider a prism $\operatorname{Pr}_{3}=v c^{1}\left(\Delta^{3}\right), \mathcal{Z}_{P_{r_{3}}}=S^{3} \times S^{5}$ and cut a vertical edge. We get a 3-cube C, for which $\mathcal{Z}_{C}=S^{3} \times S^{3} \times S^{3}$.

A moment-angle manifold \mathcal{Z}_{P}

Examples

- 1) If $P=\Delta^{n}$ then $\mathcal{Z}_{P}=S^{2 n+1}$;

2) If $P=P_{1} \times P_{2}$ then $\mathcal{Z}_{P}=\mathcal{Z}_{P_{1}} \times \mathcal{Z}_{P_{2}}$

- Consider a prism $P_{r_{3}}=v c^{1}\left(\Delta^{3}\right), \mathcal{Z}_{\text {r }_{3}}=S^{3} \times S^{5}$ and cut a vertical edge. We get a 3-cube C, for which $\mathcal{Z}_{C}=S^{3} \times S^{3} \times S^{3}$.
If we perform an edge truncation of C we get a 5 -gonal prism $P r_{5}$ and $\mathcal{Z}_{P_{r_{5}}}=\left(S^{3} \times S^{4}\right)^{\# 5} \times S^{3}$.

A moment-angle manifold \mathcal{Z}_{P}

Examples

- 1) If $P=\Delta^{n}$ then $\mathcal{Z}_{P}=S^{2 n+1}$;

2) If $P=P_{1} \times P_{2}$ then $\mathcal{Z}_{P}=\mathcal{Z}_{P_{1}} \times \mathcal{Z}_{P_{2}}$

- Consider a prism $\operatorname{Pr}_{3}=v c^{1}\left(\Delta^{3}\right), \mathcal{Z}_{P_{r_{3}}}=S^{3} \times S^{5}$ and cut a vertical edge. We get a 3-cube C, for which $\mathcal{Z}_{C}=S^{3} \times S^{3} \times S^{3}$.
If we perform an edge truncation of C we get a 5 -gonal prism $P r_{5}$ and $\mathcal{Z}_{P_{r_{5}}}=\left(S^{3} \times S^{4}\right)^{\# 5} \times S^{3}$.
- Consider a 3-polytope $P=v c^{1}(C)$. Then \mathcal{Z}_{P} is not homotopy equivalent to a connected sum of products of spheres.

Motivation: formality

The moment-angle functor \mathcal{Z} represents the homotopy type of \mathcal{Z}_{P} and the ring structure of $H^{*}\left(\mathcal{Z}_{P} ; \mathbb{k}\right)$ as invariants of the combinatorial type (face lattice equivalence) of P.

Motivation: formality

The moment-angle functor \mathcal{Z} represents the homotopy type of \mathcal{Z}_{P} and the ring structure of $H^{*}\left(\mathcal{Z}_{P} ; \mathbb{k}\right)$ as invariants of the combinatorial type (face lattice equivalence) of P. Here we are mainly interested in the following problem:

Formality and higher Massey products for \mathcal{Z}_{P}

Determine the widest possible class of simple polytopes P s.t. there are nontrivial higher Massey operations in $H^{*}\left(\mathcal{Z}_{P} ; \mathbb{Q}\right)$, or more generally, \mathcal{Z}_{P} is not rationally formal. Formality means, that its Sullivan-de Rham algebra (A, d) of PL-forms with coefficients in \mathbb{Q} is formal in CDGA, i.e., there exists a zigzag of quasi-isomorphisms (weak equivalence) between (A, d) and its cohomology algebra $\left(H^{*}\left(\mathcal{Z}_{P} ; \mathbb{Q}\right), 0\right)$.

Motivation: formality

Examples

- spheres;
- H-spaces;
- symmetric spaces;
- compact connected Lie groups G and their classifying spaces $B G$;

Motivation: formality

Examples

- spheres;
- H-spaces;
- symmetric spaces;
- compact connected Lie groups G and their classifying spaces $B G$;
- compact Kähler manifolds (P.Deligne, Ph.Griffiths, J.Morgan, D.Sullivan'75) and, in particular, projective toric varieties;

Motivation: formality

Examples

- spheres;
- H-spaces;
- symmetric spaces;
- compact connected Lie groups G and their classifying spaces $B G$;
- compact Kähler manifolds (P.Deligne, Ph.Griffiths, J.Morgan, D.Sullivan'75) and, in particular, projective toric varieties;
- quasitoric manifolds (T.Panov, N.Ray'08).

Motivation: formality

Examples

- spheres;
- H-spaces;
- symmetric spaces;
- compact connected Lie groups G and their classifying spaces $B G$;
- compact Kähler manifolds (P.Deligne, Ph.Griffiths, J.Morgan, D.Sullivan'75) and, in particular, projective toric varieties;
- quasitoric manifolds (T.Panov, N.Ray’08).

Moreover, formality is preserved by wedges, direct products and connected sums.

Stanley-Reisner rings

Let \mathbb{k} be a commutative ring with a unit and consider a ($n-1$)-dimensional simplicial complex K on the ordered set $[m]=\{1, \ldots, m\}$. Let $\mathbb{k}[m]=\mathbb{k}\left[v_{1}, \ldots, v_{m}\right]$ be the graded polynomial algebra on m variables, $\operatorname{deg}\left(v_{i}\right)=2$.

Stanley-Reisner rings

Let \mathbb{k} be a commutative ring with a unit and consider a ($n-1$)-dimensional simplicial complex K on the ordered set $[m]=\{1, \ldots, m\}$. Let $\mathbb{k}[m]=\mathbb{k}\left[v_{1}, \ldots, v_{m}\right]$ be the graded polynomial algebra on m variables, $\operatorname{deg}\left(v_{i}\right)=2$.

Face rings

A face ring (or a Stanley-Reisner ring) of K is the quotient ring

$$
\mathbb{k}[K]:=\mathbb{k}\left[v_{1}, \ldots, v_{m}\right] / \mathcal{I}_{K}
$$

where \mathcal{I}_{K} is the ideal generated by those square free monomials $v_{i_{1}} \cdots v_{i_{s}}$ for which $\left\{i_{1}, \ldots, i_{s}\right\}$ is not a simplex of K. We denote $\mathbb{k}[P]=\mathbb{k}\left[\partial P^{*}\right]$.

Note that $\mathbb{k}[K]$ is a module over $\mathbb{k}\left[v_{1}, \ldots, v_{m}\right]$ via the quotient projection.

Cohomology ring of \mathcal{Z}_{P}

The following result relates cohomology of \mathcal{Z}_{P} to combinatorics of the polytope P :

Theorem (V.Buchstaber, T.Panov'98)

If we define a differential graded algebra
$R(P)=\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{k}[P] /\left(v_{i}^{2}=u_{i} v_{i}=0,1 \leq i \leq m\right)$ with bideg $u_{i}=(-1,2)$, bideg $v_{i}=(0,2) ; d u_{i}=v_{i}, d v_{i}=0$, then:

$$
H^{*, *}\left(\mathcal{Z}_{P} ; \mathbb{k}\right) \cong H^{*, *}[R(P), d] \cong \operatorname{Tor}_{\mathbb{k}\left[v_{1}, \ldots, v_{m}\right]}^{*, *}(\mathbb{k}[P], \mathbb{k})
$$

Cohomology ring of \mathcal{Z}_{P}

The following result relates cohomology of \mathcal{Z}_{P} to combinatorics of the polytope P :

Theorem (V.Buchstaber, T.Panov'98)

If we define a differential graded algebra
$R(P)=\Lambda\left[u_{1}, \ldots, u_{m}\right] \otimes \mathbb{k}[P] /\left(v_{i}^{2}=u_{i} v_{i}=0,1 \leq i \leq m\right)$ with bideg $u_{i}=(-1,2)$, bideg $v_{i}=(0,2) ; d u_{i}=v_{i}, d v_{i}=0$, then:

$$
H^{*, *}\left(\mathcal{Z}_{P} ; \mathbb{k}\right) \cong H^{*, *}[R(P), d] \cong \operatorname{Tor}_{\mathbb{k}\left[v_{1}, \ldots, v_{m}\right]}^{*, *}(\mathbb{k}[P], \mathbb{k})
$$

These algebras admit $\mathbb{N} \oplus \mathbb{Z}^{m}$-multigrading and we have

$$
\operatorname{Tor}_{\mathbb{k}\left[v_{1}, \ldots, v_{m}\right]}^{-i, 2 \mathbf{a}}(\mathbb{k}[P], \mathbb{k}) \cong H^{-i, 2 \mathbf{a}}(R(P), d),
$$

where $\operatorname{Tor}_{\mathbb{k}\left[v_{1}, \ldots, v_{m}\right]}^{-i, 2 J}(\mathbb{k}[P], \mathbb{k}) \cong \widetilde{H}^{|J|-i-1}\left(P_{\jmath} ; \mathbb{k}\right)$ for $J \subset[m]$. Here we denote $P_{J}=\cup_{j \in J} F_{j}$. The multigraded component $\operatorname{Tor}_{\mathbb{k}\left[v_{1}, \ldots, v_{m}\right]}^{-i, 2 \mathbf{a}}(\mathbb{k}[P], \mathbb{k})=0$, if \mathbf{a} is not a $(0,1)$-vector of length m.

Graph-associahedra

We now turn to a discussion of flag nestohedra.

Building set

Let $S=\{1,2, \ldots, n+1\}, n \geq 2$. A building set on S is a family of subsets $B=\left\{B_{k} \subseteq S\right\}$, such that: 1) $\{i\} \in B$ for all $1 \leq i \leq n+1$; 2) if $B_{i} \cap B_{j} \neq \varnothing$, then $B_{i} \cup B_{j} \in B$.

Graph-associahedra

We now turn to a discussion of flag nestohedra.

Building set

Let $S=\{1,2, \ldots, n+1\}, n \geq 2$. A building set on S is a family of subsets $B=\left\{B_{k} \subseteq S\right\}$, such that: 1) $\{i\} \in B$ for all $1 \leq i \leq n+1$; 2) if $B_{i} \cap B_{j} \neq \varnothing$, then $B_{i} \cup B_{j} \in B$.

Nestohedra

Nestohedron is a simple convex n-dimensional polytope $P_{B}=\sum_{B_{k} \in B} \Delta_{B_{k}}$, where $\Delta_{B_{k}}=\operatorname{conv}\left\{e_{j} \mid j \in B_{k}\right\} \subset \mathbb{R}^{n+1}$.

Graph-associahedra

We now turn to a discussion of flag nestohedra.

Building set

Let $S=\{1,2, \ldots, n+1\}, n \geq 2$. A building set on S is a family of subsets $B=\left\{B_{k} \subseteq S\right\}$, such that: 1) $\{i\} \in B$ for all $1 \leq i \leq n+1$; 2) if $B_{i} \cap B_{j} \neq \varnothing$, then $B_{i} \cup B_{j} \in B$.

Nestohedra

Nestohedron is a simple convex n-dimensional polytope
$P_{B}=\sum_{B_{k} \in B} \Delta_{B_{k}}$, where $\Delta_{B_{k}}=\operatorname{conv}\left\{e_{j} \mid j \in B_{k}\right\} \subset \mathbb{R}^{n+1}$.

Example: graph-associahedra

A graphical building set $B(\Gamma)$ for a graph Γ on the vertex set S consists of such B_{k} that $\Gamma_{B_{k}}$ is a connected subgraph of Γ. Then $P_{\Gamma}=P_{B(\Gamma)}$ is called a graph-associahedron.

Graph-associahedra

Graph-associahedra were first introduced by M.Carr and S.Devadoss (2006) in their study of Coxeter complexes.

Examples

- Γ is a complete graph on $[n+1]$. Then $P_{\Gamma}=P e^{n}$ is a permutohedron.
- Γ is a stellar graph on $[n+1]$. Then $P_{\Gamma}=S t^{n}$ is a stellahedron.
- Γ is a cycle graph on $[n+1]$.

Then $P_{\Gamma}=C y^{n}$ is a cyclohedron (or Bott-Taubes polytope).

- Γ is a chain graph on $[n+1]$.

Then $P_{\Gamma}=A s^{n}$ is an associahedron (or Stasheff polytope).

Graph-associahedra

Graph-associahedra were first introduced by M.Carr and S.Devadoss (2006) in their study of Coxeter complexes.

Examples

- Γ is a complete graph on $[n+1]$. Then $P_{\Gamma}=P e^{n}$ is a permutohedron.
- Γ is a stellar graph on [$n+1$]. Then $P_{\Gamma}=S t^{n}$ is a stellahedron.
- Γ is a cycle graph on $[n+1]$. Then $P_{\Gamma}=C y^{n}$ is a cyclohedron (or Bott-Taubes polytope).
- Γ is a chain graph on $[n+1]$. Then $P_{\Gamma}=A s^{n}$ is an associahedron (or Stasheff polytope).

Graph-associahedra are flag polytopes, i.e. if a number of facets has an empty intersection then some pair of these facets has an empty intersection. Moreover, they are Delzant polytopes (all nestohedra are, due to the result of A.Zelevinsky).

Graph-associahedra

In order to work with combinatorial types of graph-associahedra we should describe the structure of their face lattices.

Face poset

Facets of P_{Γ} are in 1-1 correspondence with non maximal connected subgraphs of Γ.
Moreover, a set of facets corresponding to such subgraphs
$\Gamma_{i_{1}}, \ldots, \Gamma_{i_{s}}$ has a nonempty intersection if and only if:
(1) For any two subgraphs $\Gamma_{i_{k}}, \Gamma_{i}$, either they do not have a common vertex or one is a subgraph of another;
(2) If any two of the subgraphs $\Gamma_{i_{k_{1}}}, \ldots, \Gamma_{i_{k}}, I \geqslant 2$ do not have common vertices, then their union graph is disconnected.

Graph-associahedra

In order to work with combinatorial types of graph-associahedra we should describe the structure of their face lattices.

Face poset

Facets of P_{Γ} are in 1-1 correspondence with non maximal connected subgraphs of Γ.
Moreover, a set of facets corresponding to such subgraphs
$\Gamma_{i_{1}}, \ldots, \Gamma_{i_{s}}$ has a nonempty intersection if and only if:
(1) For any two subgraphs $\Gamma_{i_{k}}, \Gamma_{i}$, either they do not have a common vertex or one is a subgraph of another;
(2) If any two of the subgraphs $\Gamma_{i_{k_{1}}}, \ldots, \Gamma_{i_{k}}, I \geqslant 2$ do not have common vertices, then their union graph is disconnected.

- If $P=P e^{n}$ then its facets $F_{1} \cap F_{2} \neq \varnothing$ if and only if the corresponding Γ_{1} and Γ_{2} are subgraphs of one another;
- If $\Gamma_{i}, 1 \leq i \leq r$ are connected components of Γ then $P_{\Gamma}=P_{\Gamma_{1}} \times \ldots \times P_{\Gamma_{r}}$.

Graph-associahedra

Definition: special subgraphs in a graph

1) Suppose Γ is a graph. For any of its connected subgraphs γ one can compute the number $i(\gamma)$ of such connected subraphs $\tilde{\gamma}$ in Γ that either

$$
\gamma \cap \tilde{\gamma} \neq \varnothing, \gamma, \tilde{\gamma}
$$

or

$$
\gamma \cap \tilde{\gamma}=\varnothing
$$

and $\gamma \sqcup \tilde{\gamma}$ is a connected subgraph in Γ.

Graph-associahedra

Definition: special subgraphs in a graph

1) Suppose Γ is a graph. For any of its connected subgraphs γ one can compute the number $i(\gamma)$ of such connected subraphs $\tilde{\gamma}$ in Γ that either

$$
\gamma \cap \tilde{\gamma} \neq \varnothing, \gamma, \tilde{\gamma}
$$

or

$$
\gamma \cap \tilde{\gamma}=\varnothing
$$

and $\gamma \sqcup \tilde{\gamma}$ is a connected subgraph in Γ.
2) We denote by $i_{\max }=i_{\max }(\Gamma)$ the maximal value of $i(\gamma)$ over all connected subgraphs γ in Г. A connected subgraph γ, on which $i_{\max }$ is achieved, will be called a special subgraph.

Graph-associahedra: bigraded Betti numbers

Using the face poset structure of P_{Γ} we get the following result:

Theorem

Let $P=P_{\Gamma}$ be a graph-associahedron of dimension $n \geq 3$ for a connected graph Γ. Then for $i>i_{\max }$:

$$
\beta^{-i, 2(i+1)}(P)=0
$$

Denote the number of special subgraphs in Γ by s. Then

$$
\beta^{-i_{\max }, 2\left(i_{\max }+1\right)}(P)=s
$$

Bigraded Betti numbers: examples

For the 4 classical series of graph-associahedra the theorem gives the following values of $i_{\max }$ and s.

Associahedron

$$
\begin{aligned}
& \beta^{-q, 2(q+1)}(P)= \begin{cases}n+3, & \text { if } n \text { is even; } \\
\frac{n+3}{2}, & \text { if } n \text { is odd; }\end{cases} \\
& \beta^{-i, 2(i+1)}(P)=0 \quad \text { for } i \geq q+1,
\end{aligned}
$$

where $q=q(n)$ is:

$$
q=q(n)= \begin{cases}\frac{n(n+2)}{4}, & \text { if } n \text { is even; } \\ \frac{(n+1)^{2}}{4}, & \text { if } n \text { is odd }\end{cases}
$$

Bigraded Betti numbers: examples

Cyclohedron

$$
\begin{aligned}
& \beta^{-q, 2(q+1)}(P)= \begin{cases}2 n+2, & \text { if } n \text { is even; } \\
n+1, & \text { if } n \text { is odd; }\end{cases} \\
& \beta^{-i, 2(i+1)}(P)=0 \quad \text { for } i \geq q+1,
\end{aligned}
$$

where $q=q(n)$ is:

$$
q=q(n)= \begin{cases}\frac{n(n+2)-2}{2}, & \text { if } n \text { is even; } \\ \frac{(n+1)^{2}-2}{2}, & \text { if } n \text { is odd }\end{cases}
$$

Bigraded Betti numbers: examples

Permutohedron

$$
\begin{aligned}
& \beta^{-q, 2(q+1)}(P)=\binom{n+1}{\left[\frac{n+1}{2}\right]} \\
& \beta^{-i, 2(i+1)}(P)=0 \quad \text { for } i \geq q+1,
\end{aligned}
$$

where $q=q(n)=2^{n+1}-2^{\left[\frac{n+1}{2}\right]}-2^{\left[\frac{n+2}{2}\right]}+1$
Stellahedron

$$
\begin{aligned}
& \beta^{-q, 2(q+1)}(P)=\binom{n}{\left[\frac{n}{2}\right]} \\
& \beta^{-i, 2(i+1)}(P)=0 \quad \text { for } i \geq q+1,
\end{aligned}
$$

where $q=q(n)=2^{n}-2^{\left[\frac{n}{2}\right]}-2^{\left[\frac{n+1}{2}\right]}+\left[\frac{n+3}{2}\right]$.

Pontryagin algebra $H_{*}\left(\Omega \mathcal{Z}_{P}\right)$

Bigraded Betti numbers of the type $\beta^{-i, 2(i+1)}(P)$ have another topological application by means of the following result.

Loop homology of moment-angle-manifolds

J.Grbić, T.Panov, S.Theriault, J.Wu (2012) proved that $\sum_{i=1}^{m-n} \beta^{-i, 2(i+1)}(P)$ equals the minimal number of multiplicative generators of the Pontryagin algebra $H_{*}\left(\Omega \mathcal{Z}_{P} ; \mathbb{k}\right)$ for any flag simple polytope P.

Pontryagin algebra $H_{*}\left(\Omega \mathcal{Z}_{P}\right)$

Bigraded Betti numbers of the type $\beta^{-i, 2(i+1)}(P)$ have another topological application by means of the following result.

Loop homology of moment-angle-manifolds
J.Grbić, T.Panov, S.Theriault, J.Wu (2012) proved that $\sum_{i=1}^{m-n} \beta^{-i, 2(i+1)}(P)$ equals the minimal number of multiplicative generators of the Pontryagin algebra $H_{*}\left(\Omega \mathcal{Z}_{P} ; \mathbb{k}\right)$ for any flag simple polytope P.

Remark: torsion in cohomology

Consider the principal \mathbb{T}^{m-n}-bundle $\mathcal{Z}_{P} \rightarrow M_{P}$ for $P^{n}=P_{\Gamma}$. For $P=P e^{n}$ and $n \geq 5 H^{*}\left(\mathcal{Z}_{P}\right)$ may have an arbitrary finite group as a direct summand. On the other hand, due to Danilov-Jurkiewicz theorem, $H^{*}\left(M_{P}\right)$ is always free.

Massey k-products in $H^{*}[A, d]$

Defining system

Suppose (A, d) is a dga, $\alpha_{i}=\left[a_{i}\right] \in H^{*}[A, d]$ and $a_{i} \in A^{n_{i}}$ for $1 \leq i \leq k$. Then a defining system for $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ is a
$(k+1) \times(k+1)$-matrix C, s.t. the following conditions hold:
(1) $c_{i, j}=0$, if $i \geq j$,
(2) $c_{i, i+1}=a_{i}$,
(3) $a \cdot E_{1, k+1}=d C-\bar{C} \cdot C$ for some $a=a(C) \in A$, where $\bar{c}_{i, j}=(-1)^{\operatorname{deg}} c_{i, j} \cdot c_{i, j}$.

This implies: $d(a)=0$ and $a \in A^{m}, m=n_{1}+\ldots+n_{k}-k+2$.

Massey k-products in $H^{*}[A, d]$

Defining system

Suppose (A, d) is a dga, $\alpha_{i}=\left[a_{i}\right] \in H^{*}[A, d]$ and $a_{i} \in A^{n_{i}}$ for $1 \leq i \leq k$. Then a defining system for $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ is a
$(k+1) \times(k+1)$-matrix C, s.t. the following conditions hold:
(1) $c_{i, j}=0$, if $i \geq j$,
(2) $c_{i, i+1}=a_{i}$,
(3) $a \cdot E_{1, k+1}=d C-\bar{C} \cdot C$ for some $a=a(C) \in A$, where $\bar{c}_{i, j}=(-1)^{\operatorname{deg} c_{i, j}} \cdot c_{i, j}$.

This implies: $d(a)=0$ and $a \in A^{m}, m=n_{1}+\ldots+n_{k}-k+2$.

Definition

A Massey k-product $\left\langle\alpha_{1}, \ldots, \alpha_{k}\right\rangle$ is said to be defined, if there exists a defining system C for it.
If so, this Massey product consists of all $\alpha=[a(C)]$ for each defining system C. It is called trivial, if $[a(C)]=0$ for some C.

Massey k-products: examples

k=2

If $\left\langle\alpha_{1}, \alpha_{2}\right\rangle$ is defined, then we have:

$$
a=d\left(c_{1,3}\right)-\bar{a}_{1} \cdot a_{2} .
$$

k=3
If $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle$ is defined, then we have:

$$
\begin{gathered}
a=d\left(c_{1,4}\right)-\bar{a}_{1} \cdot c_{2,4}-\bar{c}_{1,3} \cdot a_{3}, \\
d\left(c_{1,3}\right)=\bar{a}_{1} \cdot a_{2}, \\
d\left(c_{2,4}\right)=\bar{a}_{2} \cdot a_{3} .
\end{gathered}
$$

Massey k-products: examples

$\mathrm{k}=4$

If $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\rangle$ is defined, then we have:

$$
\begin{array}{rr}
a=d\left(c_{1,5}\right)-\bar{a}_{1} \cdot c_{2,5}-\bar{c}_{1,3} \cdot c_{3,5}-\bar{c}_{1,4} \cdot a_{4}, \\
d\left(c_{1,3}\right) & =r \\
d\left(c_{1,4}\right) & =\bar{a}_{1} \cdot c_{2,4}+\bar{c}_{1,3} \cdot a_{3}, \\
d\left(c_{2,4}\right) & =a_{3}, \\
d\left(c_{2,5}\right) & =\bar{a}_{2} \cdot c_{3,5}+\bar{c}_{2,4} \cdot a_{3}, \\
d\left(c_{3,5}\right) & =
\end{array}
$$

Triple Massey products in $H^{*}\left(\mathcal{Z}_{P}\right)$

Remarks

(1) V.Buchstaber and V.Volodin (2011) constructed realizations of all flag nestohedra as 2 -truncated cubes, i.e. a result of a sequence of truncations of codimension 2 faces only, starting with a cube, and proved the Gal conjecture on γ-vectors for them;

Triple Massey products in $H^{*}\left(\mathcal{Z}_{P}\right)$

Remarks

(1) V.Buchstaber and V.Volodin (2011) constructed realizations of all flag nestohedra as 2 -truncated cubes, i.e. a result of a sequence of truncations of codimension 2 faces only, starting with a cube, and proved the Gal conjecture on γ-vectors for them;
(2) G.Denham and A.Suciu (2005) described 5 graphs, s.t. there is a nontrivial triple Massey product of 3-dimensional classes in $H^{*}\left(\mathcal{Z}_{P}\right)$ iff one of these graphs is an induced subgraph in $s k^{1}\left(\partial P^{*}\right)$. All such products are decomposable.

Triple Massey products in $H^{*}\left(\mathcal{Z}_{P}\right)$

The following result holds for triple Massey products in the cohomology ring of \mathcal{Z}_{P}.

Theorem

Let P be a generalized associahedron of type $A, B(C), D$, or $P=P_{\Gamma}$. Then there is a defined and nontrivial triple Massey product $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle$ of some classes $\alpha_{i} \in H^{3}\left(\mathcal{Z}_{P}\right), i=1,2,3$ if and only if P is a generalized associahedron or a graph-associahedron P_{Γ} and in the graph Γ there is a connected component on $n+1=4$ vertices, different from the complete graph K_{4}. All such Massey products are decomposable.

Triple Massey products in $H^{*}\left(\mathcal{Z}_{P}\right)$

The following result holds for triple Massey products in the cohomology ring of \mathcal{Z}_{P}.

Theorem

Let P be a generalized associahedron of type $A, B(C)$, D, or $P=P_{\Gamma}$. Then there is a defined and nontrivial triple Massey product $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle$ of some classes $\alpha_{i} \in H^{3}\left(\mathcal{Z}_{P}\right), i=1,2,3$ if and only if P is a generalized associahedron or a graph-associahedron P_{Γ} and in the graph Γ there is a connected component on $n+1=4$ vertices, different from the complete graph K_{4}. All such Massey products are decomposable.

The face lattice allows us to reduce the general case to the case of $n=3$ and apply the result of Denham and Suciu.

Example: generalized associahedron of type A or Stasheff polytope, $n=3$

Example: generalized associahedron of type B (C) or Bott-Taubes polytope, $n=3$

Massey operations and graph-associahedra

Any nestohedron on a connected building set can be obtained from a simplex as a result of a truncation sequence of the simplex's faces only.

Theorem

- If $P=P e^{n}, n \geq 2$ and the classes $\alpha_{i} \in H^{3}\left(\mathcal{Z}_{P}\right), 1 \leq i \leq n+1$ are represented by $(n+1)$ pairs of the opposite permutohedra facets, then $\left\langle\alpha_{1}, \ldots, \alpha_{n+1}\right\rangle$ is defined and trivial;
- If $P=S t^{n}, n \geq 2$ and the classes $\alpha_{i} \in H^{3}\left(\mathcal{Z}_{P}\right), 1 \leq i \leq n$ are represented by n pairs of the opposite stellahedra facets, then $\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$ is defined and trivial.

Example: 3-dimensional permutohedron

Example: 3-dimensional stellahedron

Massey operations and graph-associahedra

Example: $n=2$

- $P=A s^{2}$ is a 5-gon, $\mathcal{Z}_{P}=\left(S^{3} \times S^{4}\right)^{\# 5}$ and the vanishing cup product corresponds to 2 pairs of non-adjacent edges in a 5-gon.
- $P=P e^{2}$ is a 6 -gon, $\mathcal{Z}_{P}=\left(S^{3} \times S^{5}\right)^{\# 6} \#\left(S^{4} \times S^{4}\right)^{\# 8} \#\left(S^{5} \times S^{3}\right)^{\# 3}$ and the vanishing triple Massey product corresponds to 3 pairs of parallel edges in a regular 6-gon.

Massey operations and 2-truncated cubes

We next consider a particular family of 2 -truncated n-cubes \mathcal{P}, one for each dimension n, for which $\mathcal{Z}_{\mathcal{P}}$ has a nontrivial Massey product of order n.

Definition

Suppose I^{n} is an n-dimensional cube with facets $F_{1}, \ldots, F_{2 n}$, such that F_{i} and $F_{n+i}, 1 \leq i \leq n$ are parallel (do not intersect). Then we define \mathcal{P} as a result of a consecutive cut of faces of codimension 2 from I^{n}, having the following Stanley-Reisner ideal:
$I=\left(v_{1} v_{n+1}, \ldots, v_{n} v_{2 n}, v_{1} v_{n+2}, \ldots, v_{n-1} v_{2 n}, \ldots, v_{1} v_{2 n-1}, v_{2} v_{2 n}, \ldots\right)$,
or, equivalently,

$$
I=\left(v_{k} v_{n+k+i}, 0 \leq i \leq n-2,1 \leq k \leq n-i, \ldots\right),
$$

where v_{i} correspond to $F_{i}, 1 \leq i \leq 2 n$ and in the last dots are the monomials corresponding to the new facets.

Massey operations and 2-truncated cubes

Remarks

- For $n=2$ we get a 2-dimensional cube (the square) and for $n=3$ we get a simple 3 -polytope P with 8 facets giving a nontrivial triple Massey product due to I.Baskakov result (2003);

Massey operations and 2-truncated cubes

Remarks

- For $n=2$ we get a 2-dimensional cube (the square) and for $n=3$ we get a simple 3 -polytope P with 8 facets giving a nontrivial triple Massey product due to I.Baskakov result (2003);
- \mathcal{P} is a flag nestohedron: we can easily construct the building set B for \mathcal{P} on the vertex set $S=[n+1]$ by identifying F_{i} with $\{1, \ldots, i\}$ for $1 \leq i \leq n$ and identifying F_{i} with $\{i-n+1\}$ for $n+1 \leq i \leq 2 n$. Then we consecutively cut the following faces:

$$
\{1\} \sqcup\{3\},\{1,2\} \sqcup\{4\}, \ldots,\{1, \ldots, n-1\} \sqcup\{n+1\}
$$

$$
\{1\} \sqcup\{n\},\{1,2\} \sqcup\{n+1\} .
$$

Massey operations and 2-truncated cubes

Remarks

- Thus, $\mathcal{P}=P_{B}$ for the building set B consisting of the building set

$$
B_{0}=\left\{\{i\}_{1}^{n+1},\{1,2\},\{1,2,3\}, \ldots,[n+1]\right\}
$$

of an n-cube, the above subsets in $[n+1]$ and all the subsets in $[n+1]$ which are the unions of nontrivially intersecting elements in B;

Massey operations and 2-truncated cubes

Remarks

- Thus, $\mathcal{P}=P_{B}$ for the building set B consisting of the building set

$$
B_{0}=\left\{\{i\}_{1}^{n+1},\{1,2\},\{1,2,3\}, \ldots,[n+1]\right\}
$$

of an n-cube, the above subsets in $[n+1]$ and all the subsets in $[n+1]$ which are the unions of nontrivially intersecting elements in B;

- \mathcal{P} is not a graph-associahedron: its number of facets $f_{0}(\mathcal{P})=\frac{n(n+3)}{2}-1<f_{0}\left(A s^{n}\right)=\frac{n(n+3)}{2}$, thus we can apply the lower and upper bounds for f-vectors of graph-associahedra proved by Buchstaber and Volodin.

Massey operations and 2-truncated cubes

Our main result on nontrivial higher Massey products for moment-angle manifolds is the following.

Theorem

Suppose $\alpha_{i} \in H^{3}\left(\mathcal{Z}_{\mathcal{P}}\right)$ is represented by a 3-dimensional cocycle $v_{i} u_{n+i} \in R^{-1,4}(\mathcal{P})$ for $1 \leq i \leq n$ and $n \geq 2$. Then the n-fold Massey product $\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$ is defined and nontrivial.

Massey operations and 2-truncated cubes

Our main result on nontrivial higher Massey products for moment-angle manifolds is the following.

Theorem

Suppose $\alpha_{i} \in H^{3}\left(\mathcal{Z}_{\mathcal{P}}\right)$ is represented by a 3-dimensional cocycle $v_{i} u_{n+i} \in R^{-1,4}(\mathcal{P})$ for $1 \leq i \leq n$ and $n \geq 2$. Then the n-fold Massey product $\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$ is defined and nontrivial.

- Any element $\alpha=[a] \in\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$ is s.t. $a \in R^{*}(\mathcal{P})$ is a sum of its multigraded components and
$d: R^{-i, 2 J}(\mathcal{P}) \rightarrow R^{-(i-1), 2 J}(\mathcal{P})$. Thus, a is a coboundary iff each of its multigraded components is a coboundary;
- For any such $a \in R^{*}(\mathcal{P})$ its component in $R^{-(2 n-2), 2(1, \ldots, 1,0, \ldots, 0)}(\mathcal{P})$ with $2 n$ " 1 "'s is always represented by the cocycle $v_{1} v_{2 n} u_{2} u_{3} \ldots u_{2 n-1}$ (up to sign), which is not a coboundary.

$$
I_{P}=\left(v_{1} v_{4}, v_{2} v_{5}, v_{3} v_{6}, v_{1} v_{5}, v_{2} v_{6}, \ldots\right) .
$$

Then for $a_{i}=v_{i} u_{n+i}$ we have (up to sign):

$$
c_{1,3}=v_{1} u_{2} u_{4} u_{5}, c_{2,4}=v_{2} u_{3} u_{5} u_{6}, a=v_{1} v_{6} u_{2} u_{3} u_{4} u_{5}
$$

Thus, $\alpha=[a]=-\left[v_{1} u_{4} u_{5}\right] \cdot\left[v_{6} u_{2} u_{3}\right]$.

Massey operations and flag nestohedra

Using the previous theorem, the following statement can be obtained.

Theorem

There exists a flag nestohedron $P=P_{B}$, such that there are nontrivial higher Massey products of any prescribed orders $n_{1}, \ldots, n_{r}, r \geq 2$ in $H^{*}\left(\mathcal{Z}_{P}\right)$.

Massey operations and flag nestohedra

Using the previous theorem, the following statement can be obtained.

Theorem

There exists a flag nestohedron $P=P_{B}$, such that there are nontrivial higher Massey products of any prescribed orders $n_{1}, \ldots, n_{r}, r \geq 2$ in $H^{*}\left(\mathcal{Z}_{P}\right)$.

Construction: substitution of building sets
Let B_{1}, \ldots, B_{n+1} be connected building sets on $\left[k_{1}\right], \ldots,\left[k_{n+1}\right]$. Then, for every B on $[n+1]$, define $B^{\prime}=B\left(B_{1}, \ldots, B_{n+1}\right)$ on $\left[k_{1}\right] \sqcup \cdots \sqcup\left[k_{n+1}\right]$, consisting of elements $S^{i} \in B_{i}$ and $\bigsqcup_{i \in S}\left[k_{i}\right]$, where $S \in B$. Then $P_{B^{\prime}}=P_{B} \times P_{B_{1}} \times \cdots \times P_{B_{n+1}}$.

We take $P=P_{B}, B=B^{\prime}\left(B_{1}, \ldots, B_{r}\right)$, where $B_{s}, 1 \leq s \leq r$ is a building set for the corresponding \mathcal{P} in the previous theorem and B^{\prime} is a connected building set of a $(r-1)$-dimensional cube.

THANK YOU FOR YOUR ATTENTION!

