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1. Introduction

Discovery or recognition

of the right kind of algebraic structure

is often important

in the development of mathematical subjects.

Starting perhaps with “group” in Galois theory,

a list of examples would easily get long.

Can we systematically

find and treat algebraic structures?

Question seems important

for the use of higher categorical ideas.

With high categorical dimensionality,

more variety of structures available.

Why higher category theory?

• Necessary for both analysis and construction of topological field

theories, as has become clear

from the solution and generalization

of Baez and Dolan’s cobordism hypothesis by Lurie and Hop-

kins.

Lurie argues that an instance

of CH proved earlier was a theorem

by Costello, which was for proposing a definition of the B-model in the

mirror symmetry.
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• Categorification has been a useful method

for finding important new structures (since Grothendieck).

We apply a concrete understanding of higher coherence, and find

something systematic at a quite global level.

In order to proceed, we need a few reminders.

Coloured operad/Multicategory, a generalization

of symmetric monoidal category:

For A symmetric monoidal category,

underlying multicategory ΘA, from which

A can be recovered.

A multicategory controls algebras over it...

For U a multicategory

U-algebra in a symmetric monoidal category A
= functor U → ΘA of multicategories.

Multicategory is analogous to an algebraic theory in the sense of

Lawvere.

Many kinds of algebraic structure (in a symmetric monoidal category)

controlled by a multicategory.

Commutative: by “Com”, terminal.

Associative: by “E1”.

Bare object (no structure): by “Init”, initial uncoloured operad.

...and so on.

With colours more variety of structures can be controlled.

Example of categorified structure:

For U a multicategory

“U -monoidal category” — U -algebra in categories.

Symmetric monoidal, associative monoidal, braided, ...

Back to the subject...

When the notion “X-algebra” (e.g., U -algebra, multicategory, etc.)

has a categorification,



“categorified X-algebra” sometimes has

a good generalization, “X-theory”.

The meaning of “good” later.

We call the notion of X-theory a theorization of the notion of X-

algebra.

“Multicategory” is a theorization

of “commutative algebra”, which

generalizes “symmetric monoidal category”.

There is a natural

theorization “U-graded multicategory” of “U -algebra”,

generalizing “U -monoidal category”.

E1-graded = planar

E2-graded = braided

Init-graded multicategory = category

MulticatU(Set) = Multicat(Set)/U .

In the case U ∈ Multicat(Gpd), e.g., U = E2,

MulticatU(Gpd) = Multicat(Gpd)/U .

Example: For C a category

= multicategory with only unary multimaps

Algebra: Functor on C (“left C-module”).

Categorification: Functor C → Cat.

Theorization: In Set,

category X + functor X → C,

among which,

categorifications (and their lax morphisms) correspond to fibra-

tions
X op

Cop

(and not necessarily Cartesian functors over Cop).

“(U -graded) 2-theory” — theorization of “(U -graded) multicategory”

(= “1-theory”).



Example: For M a planar multicategory,

“Morita” Init-graded 2-theory Alg1(M), where

Alg1(ΘA) ' ΘAlg1(A)

for A a associative monoidal category with nice behaviour,

Alg1(A) “Morita” 2-category (= categorified Init-graded 1-theory) due

to Bénabou.

Alg1 will appear again later.

2. Coherence and higher theories

Concretely, can theorize

by using an inductivity

embedded in the structure of the coherence for higher associa-

tivity:

Consider situation:

m: system of operations

wanting to be associative, operating

as maps in an symmeric monoidal (∞, 1)-category.

E.g., “m + coherent associativity” may

define an “X-algebra”.

m′: system of (2-)isomorphisms/homotopies

giving an associativity of m.

m′ wants to be coherent.

In this situation,

see m′ as operations themselves.

Invertibility of those operations not required for a (op)lax X-algebra.

Then

Coherence of the associativity m′ for m

= Coherent associativity of m′ as operations

Idea for theorizing: If m

gives an X-algebra structure,

then “X-theory” is a kind

defined by operations m′

...considered in the “categorical deloop” BA, so 2-morphisms m′ are maps in

A = EndBA(∗).



Conceptual significance of theorization to be discussed later.

We can iterate theorization,

get to “n-theory”, generalizing n-categories in particular.

Definition of an n-theory can be written explicitly.

There are general constructions

of higher theories, which play various roles.

• “Delooping” construction B, of an (n + 1)-theory from an n-

theory.

For A a symmetric monoidal category (= categorified 0-theory)

Θn+1BnA ' BnΘA,

equivalence of (n + 1)-theories.

• Change of “grading”: pull-back,

push-forward on left and on right.

• Day convolution.

Many of these raises theoretic order.

If at least interested

in multicategories, then

would want to know all

higher theories.

Also concrete constructions

in more specific situations.

3. Meaning of theorization

Relevance of categorification for us:

“X-algebra” makes sense

in a categorified form

of X-algebra.

E.g.,

U -algebra in a U-monoidal category A
= lax U -monoidal functor 10

U → A,

10
U unit U -monoidal.

...an enriched notion

of U -algebra.



“U-graded multicategory”

was a common generalization

of “U -monoidal category” and “Multicategory”.

Notion of U -algebra can be enriched in a U -graded multicategory.

In general, by theorizing “X-algebra”,

we want...

“For A a categorified form of X-algebra

X-algebra in A
= “coloured” functor 1Theory

X → ΘA of X-theories”

• 1Theory
X terminal X-theory,

• ΘA denotes A as an X-theory.

• Left hand side = “coloured” lax functor 1Algebra
X → A of X-

algebras.

X-theory 3 U 1Theory
X

Categorified
X-algebra

X-algebra U -algebra X-algebra.

control control

“virtualize”

“grade” by U
(see below)

theorize

categorify

Enriched notions

Functor
U → V

U -algebra
in V

X-algebra
in V

U -algebra
in A

X-algebra
in A

Lax functor
1Algebra
X → A,

forbid
colours

V=ΘA

U=1Theory
X

V=ΘA

U=1Theory
X

forbid
colours

where

U , V: X-theories

A: categorified X-algebra

4. Graded higher theories

Are graded multicategories controlled? By what?

— By a very simple 2-theory.

In comparison,

classical answer: “By a multicategory”.



E.g., “slice” multicategory U+ of Baez and Dolan

AlgU+(Set) = MulticatSame colours as U ’s(Set)/U .

But a simpler answer above by:

expressing “1-dimensional” structure (multicategory)

as algebra over a 2-dimensional structure.

Purpose of Baez and Dolan was to define n-category.

Iterated theorization is a more direct route to n-categories

compared to Baez and Dolan.

Key: an n-category is naturally n-dimensional as is an n-theory,

rather than 1-dimensional like a multicategory.

Also helps with enriching the notion...

Where to enrich “U -graded multicategory”?

— In a (U⊗E1)-monoidal category (folklore? ...if U -graded multicategories

in a symmetric monoidal category had been known

as seems possible.)

(E1 ⊗ E1 = E2 etc.),

and more generally, ...

Let us see the details.

For U an n-theory, “U-graded n-theory”, theorizing “U -algebra”.

Theorem: Following notions are equivalent:

• U -graded n-theory.

• ΘU -algebra.

n = 1: U -graded multicategories are controlled

by the 2-theory ΘU

MulticatU = AlgΘU .

ΘU is simple and direct

...compared to U+, which was the main construction

for Baez and Dolan.

Construction of ΘU is in one step:

Replace composition operation in U

with the corepresented “bimodule”.



...essentially as simple as the underlying multicategory of a symmetric monoidal cate-

gory.

“U -graded n-theory” has a natural theorization, and

Theorem: Following notions are equivalent:

• U -graded (n + 1)-theory.

• ΘU -graded (n + 1)-theory.

Leads to iterative theorization.

For U a multicategory = 1-theory,

a U -graded 2-theory

is a general place where

the notion of U -graded multicategory

can be enriched,

specializing to enrichment

in a (U ⊗ E1)-monoidal category.

Example: U = Init,

M a planar mutlicategory.

There is forgetful functor

Alg1(M) −→ BM

of Init-graded 2-theories,

generalizing the forgetful lax functor

Alg1(A) −→ BA

for A a nice associative monoidal category.

A category = Init-graded 1-theory, enriched

in M or “along” BM,

has a canonical lift

to a category enriched

along Alg1(M).

5. Graded lower theories

U an n-theory.

For 0 ≤ m ≤ n− 1, there is a notion of U-graded m-theory so that

U -algebra = U -graded (n− 1)-theory.



Moreover, a notion of “`-theory” graded by a U-graded m-theory.

E.g.,

1m
U -graded `-theory = U -graded `-theory

6. More general higher theories

Can also theorize some structures

involving operations with multiple inputs and multiple outputs,

e.g.,

“coloured properad” of Vallette, which turns out

to be “Cocorr(Fin)-graded” 1-theory,

Cocorr(Fin) cocorrespondence category on finite sets.

We get iterative theorizations.

For C a category,

a “Bordoriented
1 -graded” 1-theory ZC such that

every 1-dimensional “TFT” in ZC

11
Bord1

−→ ZC

is of the form

11
Bord1

= Z1
Zx−−→ ZC

for an unique object

x : 1 −→ C

of C.

Very different from field theories in untheorized context,

classified by dualizable objects of a symmetric monoidal category.


