
Gale dual of the GKM graph with a complexity one axial
function
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1 Introduction

Let a1, . . . ,am be a configuration of vectors that span the whole Rn. Form an (m − n) × m matrix
B = (bjk) whose rows form a basis in the space of linear relations between ai. The set of columns
b1, . . . ,bm(∈ Rm−n) of B is called a Gale dual configuration of a1, . . . ,am. One of the merits to consider
such a configuration of vectors is to reduce the dimension of vectors. For example, the Gale dual of a
configuration of n+ 1 vectors in Rn is nothing but the set of n+ 1 real numbers. The Gale dual provides
an efficient tool for studying the combinatorics of higher dimensional polytopes with few vertices. In
particular, the Gale dual (and the Gale diagram) is used to classify n-dimensional polytopes with n + 3
vertices and to find interesting examples of the n-dimensional polytopes with n+ 4 vertices (see [BP]).

On the other hand, a GKM graph is a combinatorial counterpart of a GKM manifold. Guilleminn-Zara
in [GZ] define this notion independently of the geometry. Roughly, a GKM graph is an m-valent graph
whose oriented edges have a labeled on Zn. Therefore, one can regard each vertex of a GKM graph as
a configuration of m vectors in Zn. This interpretation leads us to consider the (Z-linear)Gale duals on
each vertex of a GKM graph. In this paper, we study the basic properties of Gale duals of GKM graphs.
In particular, Theorem 4.2 and Theorem 4.3 are the counterpart of the GKM conditions.

2 Gale dual of the labelled graph

In this section, we define a Gale dual of the labelled graph G = (Γ, α).

2.1 Gale dual

We first introduce the Gale dual over Z.
Let A := {a1, . . . , am} be the set of (possibly multiplicative) vectors in Zn such that A spans Zn. In

this paper, the number m− n is called a complexity of A. These vectors define the (m× n)-matrix by

A =
(
a1 · · · am

)
.

Then the Hermite normal form tells us that there is the matrix U ∈ GL(n;Z) such that

H := UA =


1 ∗ · · · ∗ · · · ∗
0 1 · · · ∗ · · · ∗
...

...
. . .

...
...

...
0 0 · · · 1 · · · ∗


︸ ︷︷ ︸

m

n (2.1)
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The transposed (n×m)-matrix AT defines the Z-liner map:

AT : Zn → Zm.

Using the Hermite normal form (2.1) again, we have that the linear map AT is injective and there is
no cotorsion, i.e., its cokernel Zm/im(AT ) is isomorphic to Zr, where r = m − n. By applying [RT,
Proposition 1.10], the Z-basis of ker(A) ⊂ Zm is given by the last r rows of V ∈ GL(m;Z) which gives the
Hermite normal form H ′ = V AT for AT . We also know that

Zm = im(AT )⊕ ker(A).

Denote the surjective linear map induced from the following natural projection:

B : Zm → Zm/im(AT ) ≃ ker(A) ≃ Zr.

By choosing the basis of Zr(≃ ker(A)) by the last r rows of V ∈ GL(m;Z), the linear map B is represented
by the (m× r)-matrix

B =
(
b1 · · · bm

)
.

such that

BAT = 0;

moreover, the following sequence is the short exact sequence:

Zn AT

−→ Zm B−→ Zr.

Note that A∗ := {b1, . . . , bm} spans Zr because B is surjective. We call A∗ a Gale dual of A. In
summary, we have the following definition.

Definition 2.1. Let A := {a1, . . . , am} be the set of (possibly multiplicative) vectors in Zn such that A
spans Zn. Put (m × n)-matrix A = (a1 · · · am). Assume that the (m × r)-matrix B gives the following
exact sequence:

0 −→ Zn AT

−→ Zm B−→ Zr −→ 0.

Then the set of column vectors of B, say

A∗ := {b1, . . . , bm} ⊂ Zr,

is called a Gale dual (configuration) of A ⊂ Zn.

Remark 2.2. There are several choices of a Gale dual A∗ ⊂ Zr of the given A ⊂ Zn. In this paper, we call
two Gale duals A∗

1 and A∗
2 are equivalent if there is a matrix X ∈ GL(r;Z) such that X ·A∗

1 = A∗
2, i.e., for

A∗
1 = {b1, . . . , bm}, A∗

2 = {Xb1, . . . , Xbm} ⊂ Zr. We denote two equivalent Gale duals by A∗
1 ≃ A∗

2.

Remark 2.3. There is the definition of the Z-linear Gale dual in [RT] which is more general than the
definition as above. The definition as above is directly modified from the usual Gale dual over R (see
[BP]).

We have the following fact:

Proposition 2.4. Let A ⊂ Zn be an m non-zero vectors which spans Zn and A∗ ⊂ Zr be its Gale dual,
where r = m− n. Then we can take the Gale dual of A∗ as A, i.e.,

(A∗)∗ ≃ A.

Proof. Let A be the matrix defined by A and B be the matrix defined by A∗. The equation BAT = 0
implies the equation (BAT )T = ABT = 0. By using the Hermite normal form for BT , we also have
that BT is injective. Moreover, by the previous argument, there is no torsion in im(AT ) and im(AT ) ≃
Zm/ker(A) = Zm/im(BT ). Therefore, there is no cotorsion for BT . This establishes that the Gale dual
of A∗ is equivalent to A.

Example 2.5. Take the three vectors A = {a1,a2,a3} in Z2 by(
a1 a2 a3

)
=

(
1 0 −1
0 1 −1

)
Then its Gale dual A∗ = {b1,b2,b3} in Z is(

b1 b2 b3

)
=

(
1 1 1

)
2



2.2 The canonical Gale dual of complexity one vector configurations

In this section, we consider the Gale dual of the case when the vector configuration A is a complexity one,
i.e., A = {a1, . . . , an+1} ⊂ Zn and A spans Zn. We put the n× (n+1)-matrix defined from A as follows:

AT =


aT
1

aT
2

...
aT
n+1

 =


a11 a21 · · · an1

a12 a22 · · · an2

...
...

. . .
...

a1(n+1) a2(n+1) · · · an(n+1)


Denote the (n× n)-matrix which removes the ith row vector from AT as follows:

AT
i =



aT
1

...
aT
i−1

aT
i+1

...
aT
n+1


=



a11 a21 · · · an1

...
...

. . .
...

a1(i−1) a2(i−1) · · · an(i−1)

a1(i+1) a2(i+1) · · · an(i+1)

...
...

. . .
...

a1(n+1) a2(n+1) · · · an(n+1)


Then we have the following proposition:

Proposition 2.6. Let A = {a1, . . . , an+1} ⊂ Zn be a complexity one vector configuration. Then a Gale
dual of A is taken as the following set of integers:

A∗ = {|AT
1 |, −|AT

2 |, |AT
3 |, . . . , (−1)n+1|AT

n+1|}.

Proof. Let A = (a1 · · · an+1) be the n× (n+ 1)-matrix and

R = (|AT
1 | − |AT

2 | |AT
3 | · · · (−1)n+1|AT

n+1|)

be the 1× (n+ 1)-matrix. Then, we have

RAT = |AT
1 |aT

1 − |AT
2 |aT

2 + |AT
3 |aT

3 − · · ·+ (−1)n+1|AT
n+1|aT

n+1.

It follows from the cofactor expansion that the 1st row (integer) of this matrix is as follows:

a11|AT
1 | − a12|AT

2 |+ · · ·+ (−1)n+1a1(n+1)|AT
n+1|

=a11

∣∣∣∣∣∣∣
a12 a22 · · · an2

...
...

. . .
...

a1(n+1) a2(n+1) · · · an(n+1)

∣∣∣∣∣∣∣− a12

∣∣∣∣∣∣∣∣∣
a11 a21 · · · an1

a13 a23 · · · an3

...
...

. . .
...

a1(n+1) a2(n+1) · · · an(n+1)

∣∣∣∣∣∣∣∣∣
+ · · ·+ (−1)n+1a1(n+1)

∣∣∣∣∣∣∣
a11 a21 · · · an1

...
...

. . .
...

a1n a2n · · · ann

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
a11 a11 a21 · · · an1

0 a12 a22 · · · an2

...
...

...
. . .

...
0 a1(n+1) a2(n+1) · · · an(n+1)

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
0 a11 a22 · · · an2

a12 a12 a22 · · · an2

...
...

...
. . .

...
0 a1(n+1) a2(n+1) · · · an(n+1)

∣∣∣∣∣∣∣∣∣
+ · · ·+

∣∣∣∣∣∣∣∣∣
0 a11 a22 · · · an2

0 a12 a22 · · · an2

...
...

...
. . .

...
a1(n+1) a1(n+1) a2(n+1) · · · an(n+1)

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
a11 a11 a21 · · · an1

a12 a12 a22 · · · an2

...
...

...
. . .

...
a1(n+1) a1(n+1) a2(n+1) · · · an(n+1)

∣∣∣∣∣∣∣∣∣ = 0.
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Therefore, the 1st row of RAT is zero. Similarly, we can prove the other rows are zero. Hence, RAT = 0.

This implies that the composition map Zn AT

−→ Zn+1 R−→ Z is the zero map, i.e., ker(R) ⊃ im(AT ).
Next we assume that a non-zero element x = (x1 · · ·xn+1)

T ∈ Zn+1 satisfies that Rx = 0. By definition
of R and applying the similar computations as above, we have

0 = Rx = x1|AT
1 | − · · ·+ (−1)n+1xn+1|AT

n+1| =

∣∣∣∣∣∣∣∣∣
x1 a11 a21 · · · an1

x2 a12 a22 · · · an2

...
...

...
. . .

...
xn+1 a1(n+1) a2(n+1) · · · an(n+1)

∣∣∣∣∣∣∣∣∣ .
We put the final square matrix from this computation by

(
x AT

)
. This computation shows that rk

(
x AT

)
≤

n. Therefore, the system of the equations(
x AT

)(
l
y′

)
= lx+ATy′ = 0

has the non-trivial solutions, where l ∈ Z and y′ ∈ Zn. Suppose that (l y′)T is a non-trivial solution. Since
AT is injective (because A spans Zn), if l = 0 then the equation ATy′ = −lx implies that y′ = 0; however,
this gives a contradiction to that (l y′)T is a non-trivial solution. Hence, we have lx(̸= 0) ∈ im(AT ). Now
because there is an i such that |AT

i | = ±1, the cokernel Zn+1/im(AT ) has no-torsion. This implies that
there exists an element y ∈ Zn such that

ATy = x(̸= 0) ∈ ker(R).

This shows that ker(R) ⊂ im(AT ). Hence, we have ker(R) = im(AT ) and the sequence Zn AT

−→ Zn+1 R−→ Z
is exact.

We finally prove the sequence Zn AT

−→ Zn+1 R−→ Z is the short exact sequence, i.e., AT is injective and
R is surjective. Because the row vectors of AT spans Zn, the map AT : Zn → Zn+1 is injective. We shall
show that the map R : Zn+1 → Z is surjective. By using the Hermite normal form [RT, Proposition 1.10],
there is a matrix

H =


1 ∗ · · · ∗
0 1 · · · ∗
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0

 : Zn → Zn+1,

and the isomorphism U : Zn+1 → Zn+1 such that

UAT = H.

Hence, we have

AT = U−1H.

Put U−1(en+1) = a, where en+1 is the standard basis of Zn+1. Consider the (n + 1) × (n + 1)-matrix
(a AT ). Then we have

(a AT ) = (a U−1H)

= (U−1en+1 U−1H)

= U−1(en+1 H).

Since detU−1 = ±1 and det(en+1 H) = ±1, we have

det(a AT ) = ±1.

By the definition of R, if we put a = (a1, . . . , an+1) ∈ Zn+1,

Ra = a1|AT
1 | − a2|AT

2 |+ a3|AT
3 | − · · ·+ (−1)n+1an+1|AT

n+1| = det(a AT ) = ±1.

This establishes that R is surjective.
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2.3 Abstract graph

Let Γ = (V (Γ), E(Γ)) be the abstract, oriented graph with vertices V (Γ) and edges E(Γ). We assume
that Γ is finite and connected, and there is no loops in E(Γ) in this article. For an edge e ∈ E(Γ), we use
the following symbols:

• i(e) the initial vertex of e;

• t(e) the terminal vertex of e;

• e ∈ E(Γ) the orientation reversed edge of e.

Set

Ep(Γ) = {e ∈ E(Γ) | i(e) = p}.

An abstract graph Γ is called an m-valent graph if |Ep(Γ)| = m for all p ∈ V (Γ).
We call two abstract graphs Γ and Γ′ are combinatorially equivalent if there is a bijective map

f : Γ = (V (Γ), E(Γ)) → (V (Γ′), E(Γ′)) = Γ′

such that f(e) = f(e) for all e ∈ E(Γ) and the following diagram commutes:

E(Γ)

i

��

f // E(Γ′)

i

��
V (Γ)

f // V (Γ′)

where i is the projection onto the initial vertex of an edge.

2.4 Labeled graph

Let Γ = (V (Γ), E(Γ)) be an abstract m-valent graph. If there is a label α : E(Γ) → Zn on edges of Γ,
then we denote such labeled graph by G = (Γ, α) and call it an (m,n)-labeled graph.

We call two (m,n)-labeled graphs G = (Γ, α) and G′ = (Γ′, α′) are equivalent (or φ-equivalent), denoted
as G ∼= G′, if there is a combinatorial equivalent map f : Γ → Γ′ and an isomorphism φ : Zn → Zn such
that the following diagram is commutative:

E(Γ)

f

��

α // Zn

φ

��
E(Γ′)

α′
// Zn

(2.2)

Set

α(p) = {α(e) | e ∈ Ep(Γ)} ⊂ Zn.

The set of m vectors α(p) gives the vector configuration in Zn on each vertex. We assume that α(p) spans
Zn for each p ∈ V (Γ). Then we can define the Gale dual (α(p))

∗ in Zr (r = m− n). Moreover, this gives
a new label

ρ : E(Γ) → Zr

such that ρ(p) is the Gale dual of α(p). We denote (Γ, ρ) by G∗ and call it a Gale dual of the labeled graph
G.

By Proposition 2.4, we have the following corollary:

Corollary 2.7. Let G = (Γ, α) be an (m,n)-labeled graph and G∗ = (Γ, ρ) be its Gale dual, i.e., the
(m,m− n)-labeled graph. Then there is the following isomorphism:

(G∗)∗ ∼= G
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3 Gale dual of the axial function of a GKM graph

In this section, we define the Gale dual of the axial function of a GKM graph. We first recall the complexity
one GKM graph (see [K16]).

Let Γ be an m-valent graph. We define a label α : E(Γ) → H2(BT ) on Γ. Recall that BTn (often
denoted by BT ) is a classifying space of an n-dimensional torus T , and its cohomology ring (over Z-
coefficient) is isomorphic to the polynomial ring

H∗(BT ) ≃ Z[a1, . . . , an],

where ai is a variable with deg ai = 2 for i = 1, . . . , n. So its degree two part H2(BT ) is isomorphic to
Zn. Put a label by a function α : E(Γ) → H2(BT ) on edges of Γ.

An axial function on Γ is the function α : E(Γ) → H2(BTn) for n ≤ m which satisfies the following
three conditions:

(1) α(e) = −α(e);

(2) for each p ∈ V (Γ), the set α(p) is pairwise linearly independent, i.e., each pair of elements in α(p) are
linearly independent in H2(BT );

(3) for all e ∈ E(Γ), there exists a bijective map ∇e : Ei(e)(Γ) → Et(e)(Γ) such that

1. ∇e = ∇−1
e ,

2. ∇e(e) = e, and

3. for each e′ ∈ Ei(e)(Γ), the following relation (called a congruence relation) holds:

α(∇e(e
′))− α(e′) ≡ 0 mod α(e) ∈ H2(BT ). (3.1)

The collection ∇ = {∇e | e ∈ E(Γ)} is called a connection on the labelled graph (Γ, α); we denote the
labelled graph with connection as (Γ, α,∇). The conditions as above are called an axiom of axial function.
In addition, we also assume the following condition:

(4) for each p ∈ V (Γ), the set α(p) spans H2(BT ).

The axial function which satisfies (4) is called an effective axial function.

Definition 3.1. If an m-valent graph Γ is labeled by an axial function α : E(Γ) → H2(BTn) for some
n ≤ m, then such labeled graph is said to be an (abstract) GKM graph, and denoted by (Γ, α,∇). If
such α is effective, (Γ, α,∇) is said to be an (effective) (m,n)-type GKM graph. In particular, we call an
(n+ 1, n)-type GKM graph a complexity one GKM graph.

Then, the equivalence relation on GKM graphs can be defined as follows:

Definition 3.2. Let G = (Γ, α,∇) and G′ = (Γ′, α′,∇′) be GKM graphs. We call G and G′ are equivalent
(or φ-equivalent), denoted by G ≃ G′, if there is a combinatorial equivalent map f : Γ → Γ′ and an
isomorphism φ : H2(BTn) → H2(BTn) such that the following diagram is commutative:

E(Γ)

f

��

α // H2(BTn)

φ

��
E(Γ′)

α′
// H2(BTn)

(3.2)

i.e., labeled graphs (Γ, α) and (Γ′, α′) are equivalent; moreover, f preserves the connection, i.e.,

Ei(e)(Γ)

f

��

∇e // Et(e)(Γ)

f

��
Ei(f(e))(Γ

′)
∇′

f(e) // Et(f(e))(Γ
′)

(3.3)

is commutative for all e ∈ E(Γ).

Now we may define the Gale dual of a GKM graph.
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Figure 1: A complexity one GKM graph and its Gale dual, where x, y are generators of H2(BT 2).

Definition 3.3 (Gale dual). Let G = (Γ, α,∇) be an (m,n)-type GKM graph. Take the Gale dual of
(Γ, α), say (Γ, ρ), i.e., (m,m − n)-labeled graph. We call the pair with the connection G∗ := (Γ, ρ,∇) a
Gale dual of a(n) (axial function of) GKM graph G.

By Corollary 2.7, we have the following corollary:

Corollary 3.4. Let G = (Γ, α,∇) be an (m,n)-type GKM graph and G∗ = (Γ, ρ,∇) be its Gale dual, i.e.,
the (m,m− n)-labeled graph with the connection ∇. Then there is the following isomorphism:

(G∗)∗ ∼= G

4 Two properties of a Gale dual of the complexity one GKM graph

In this section, we prove the main result of this paper. Let G = (Γ, α,∇) be a complexity one GKM graph
where Γ is an (n + 1)-valent graph. Then, we may put the axial functions around a vertex p ∈ V (Γ) as
follows:

α(p) = {α(e1,p), . . . , α(en+1,p)} ⊂ H2(BTn) ≃ Zn.

Since the complexity one GKM graph satisfies the effectiveness condition, we may assume that α(p) spans
H2(BTn) ≃ Zn. Then we can define its Gale dual ρ(p) as follows:

ρ(p) = {ρ(e1,p), . . . , ρ(en+1,p)} ⊂ Z

such that (ρ(e1,p), . . . , ρ(en+1,p)) ∈ Zn+1 is a primitive vector and

n+1∑
i=1

ρ(ei,p)α(ei,p) = 0.

We define the n× (n+ 1)-matrix

A(p) =

 α(e1,p)
...

α(en+1,p)


We first claim the following lemma:

Lemma 4.1. The Gale dual ρ(p) can be taken as

ρ(ei,p) = (−1)i+1|A(p)(i)|

where A(p)(i), i = 1, . . . , n+ 1, is the n× n-square matrix which removes the ith row from A(p).

Proof. Because of Proposition 2.6, this statement is straightforward.

Now we may prove the two properties of Gale duals of GKM graphs. The following first theorem
corresponds to the pairwise linearly independentness of GKM graphs.
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Theorem 4.2. For every p ∈ V (Γ), there are mutually distinct s, t, u ∈ [n + 1] := {1, 2, . . . , n + 1} such
that

ρ(es,p)ρ(et,p)ρ(eu,p) ̸= 0.

Proof. Let ρ(p) be the Gale dual of the complexity one GKM graph (Γ, α,∇). By definition, we have

n+1∑
i=1

ρ(ei,p)α(ei,p) = 0. (4.1)

for all p ∈ V (Γ).
Since (Γ, α,∇) is a complexity one, for some s ∈ [n + 1], there exists rk ∈ Z (k ∈ [n + 1] \ {s}) such

that

α(es,p) =
∑
k ̸=s

rkα(ek,p). (4.2)

Substituting (4.2) to (4.1), we have∑
k ̸=s

{ρ(ek,p) + rkρ(es,p)}α(ek,p) = 0.

Because of the effectiveness condition, {α(ek,p) | k ∈ [n+ 1] \ {s}} spans H2(BTn). Thus, we have

ρ(ek,p) = −rkρ(es,p) (4.3)

for all k ̸= s. If we assume ρ(es,p) = 0, then ρ(ek,p) = 0 for all k ∈ [n + 1] \ {s} by (4.3). However,
this gives a contradiction to that (ρ(e1,p), . . . , ρ(en+1,p)) ∈ Zn+1 is a primitive vector. Therefore, we have
ρ(es,p) ̸= 0.

Moreover, by (4.2) again, if only one rk is non-zero and the others are zero, then α(es,p) = rkα(ek,p).
This contradicts to the pairwise linearly independentness of the axial function. Therefore, at least two
distinct integers, say rt and ru (t, u ∈ [n+ 1] \ {s}), must be non-zero. Together with (4.3), we have that
ρ(et,p), ρ(eu,p) ̸= 0. This establishes the statement.

The next theorem is the 2nd main result of this paper. This property corresponds to the congruence
relation and α(e) = −α(e).

Theorem 4.3. Let G be a complexity one GKM graph and G∗ be its Gale dual. Let p ∈ V (Γ) and
Ep(Γ) = {e1, . . . , en+1}. Fix e ∈ Ep(Γ). Then, for every ej ̸= e, the following equation holds:

|ρ(∇e(ej))| = |ρ(ej)|.

Proof. For e = ei,p ∈ E(Γ), we put i(e) = p, t(e) = q and

A(p) =

 α(e1,p)
...

α(en+1,p)

 =


a11 a21 · · · an1

a12 a22 · · · an2

...
...

. . .
...

a1n a2n · · · ann

a1(n+1) a2(n+1) · · · an(n+1)

 ,

A(q) =

 α(∇e(e1,p))
...

α(∇e(en+1,p))

 =


b11 b21 · · · bn1

b12 b22 · · · bn2

...
...

. . .
...

b1n b2n · · · bnn

b1(n+1) b2(n+1) · · · bn(n+1)

 .

By the congruence relations (3.1), there are k1, . . . , kn+1 ∈ Z such that

A(q) −A(p) =

 α(∇e(e1,p))− α(e1,p)
...

α(∇e(en+1,p))− α(en+1,p)

 =

 α(e)k1
...

α(e)kn+1

 (4.4)
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Take j ̸= i. Then, by Lemma 4.1 and (4.4), we have

|ρ(ej,p)| = | detA(p)(j)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a21 · · · an1

...
...

. . .
...

a1(j−1) a2(j−1) · · · an(j−1)

a1(j+1) a2(j+1) · · · an(j+1)

...
...

. . .
...

a1(n+1) a2(n+1) · · · an(n+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b11 − a1ik1 b21 − a2ik1 · · · bn1 − anik1
...

...
. . .

...
b1(j−1) − a1ikj−1 b2(j−1) − a2ikj−1 · · · bn(j−1) − anikj−1

b1(j+1) − a1ikj+1 b2(j+1) − a2ikj+1 · · · bn(j+1) − anikj+1

...
...

. . .
...

b1(n+1) − a1ikn+1 b2(n+1) − a2ikn+1 · · · bn(n+1) − anikn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Therefore, by using the basic property of the determinant,

|ρ(ej,p)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b11 b21 · · · bn1

...
...

. . .
...

b1(j−1) b2(j−1) · · · bn(j−1)

b1(j+1) b2(j+1) · · · bn(j+1)

...
...

. . .
...

b1(n+1) b2(n+1) · · · bn(n+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.5)

− k1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1i a2i · · · ani

b12 b22 · · · bn2

...
...

. . .
...

b1(j−1) b2(j−1) · · · bn(j−1)

b1(j+1) b2(j+1) · · · bn(j+1)

...
...

. . .
...

b1(n+1) b2(n+1) · · · bn(n+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
− k2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b11 b21 · · · bn1

a1i a2i · · · ani

...
...

. . .
...

b1(j−1) b2(j−1) · · · bn(j−1)

b1(j+1) b2(j+1) · · · bn(j+1)

...
...

. . .
...

b1(n+1) b2(n+1) · · · bn(n+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · · − kn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b11 b21 · · · bn1

...
...

. . .
...

b1(j−1) b2(j−1) · · · bn(j−1)

b1(j+1) b2(j+1) · · · bn(j+1)

...
...

. . .
...

b1n b2n · · · bnn

a1i a2i · · · ani

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Because α(e) = −α(e), we have that α(ei,p) = −α(∇e(ei,p)); therefore, by the definition of A(q) as above
(this gives a choice of the order of Eq(Γ)), we have that

(a1i · · · ani) = −(b1i · · · bni).

Hence, by j ̸= i, the equation (4.5) and Lemma 4.1 give that

|ρ(ej,p)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b11 b21 · · · bn1

...
...

. . .
...

b1(j−1) b2(j−1) · · · bn(j−1)

b1(j+1) b2(j+1) · · · bn(j+1)

...
...

. . .
...

b1(n+1) b2(n+1) · · · bn(n+1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= | detA(q)(j)| = |ρ(∇e(ej,q))|.

This establishes the statement.
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Remark 4.4. The integers k1, . . . , kn+1 appeared in the proof are nothing but c(Γ,α,∇) in [K19].
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