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1. INTRODUCTION

The purpose of this note is to give a rough sketch of the proof of our main theorem.

Main Theorem

Let f : M* — CP(2k) be a homotopy equivalence wheWf is a closed smooth manifold
Then the diference of the fist Pontrjagin classgéM) = p1(M) — £*(p1(CP(2K))) is divisible by
16.

Notations used in this note:
e vp(n) : the p-order of n € Z \ {0} is the exponent of the primgin the prime factorization of
N. vp(0) = co.
e vp(a/b) :==vp(@) — vp(b) forae Z,be Z \ {0}.
e Z(p - thering of integers localized at the primei.e. Z,) = {a/blae€ Z,b € Z\{0}, (b, p) = 1}.
o ikp(n):=YinforneZ, ,n=ynp and0<n <p-1.
o (f(¥)=Yiso ai(q)xi for a formal power serie$(x) = Yo aiX.

We first present a short history of the partial but successful solutions to our problem.
1970, Brumfiel forkk = 2 and 3, [1].

2003, K. fork = 4.

2004, Igarashi(Master thesi®) < 31.

2009, K. fork with v2(k) < 4, published in 2012 [2].

2010, K. fork with v,(k) < 5, oral announcement.

The proof of our claim gets harder as the 2-ordek @icreases. If you go over a mountain, you
face a much higher mountain standing in front of you. It seemed that there was no hope to go over
all the infinite number of mountains in a finite lifetime. But in the fall of 2014, in a discussion of our
joint work, we finally found a hint of trick to circumvent the obstacles to our final goal. Here is our
story. We begin reviewing our research up to 2010.

(@) Letf : M* — CP(2k) be a homotopy smoothing. Then there exists a fiber homotopically
trivial vector bundle/ over CP(2k) such that the tangent bundtéM) is stably isomorphic to
the pull-back ofr(CP(2k)) & ¢ by f:

(M) 2 £*((CP(2K)) ® £).
(b) Using Hirzebruch’s index theorem M*, we see that
Index(M) = (£L(M), [M]) = (L({Z)(x/ tanhx)***, [CP(2K)]).

Sinces; (M) is nothing butf*(p1(2)), we have to study the bundéewhen IndexM) = 1.

(c) Letn be the canonical complex line bundle o¥&?(2k) and its first Chern classi () = xis
a generator of the cohomology rimj (CP(2K), Z) = Z[x]/(x**1). Letw € KO(CP(2K)) be
the realification ofy — 1c € K(CP(2k)). It is known thatK O(CP(2k)) is a free abelian group
generated by! (j = 1,2,...,K). We take another set of generatgtg(w) (j = 1,2 ...,K),

where;z/{? is the realj-th Adams operation.
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(d) According to the positive solution of the Adams-conjecture, the kernel ai-thap coincides
with Image(/3 — 1) when localized at 2. Therefore when we ppt (43 — 1)y (w), then the
fiber homotopically trivial vector bundlé can be written as

¢=Mdy+Mpdo + - + M,
wherem; belong toZ»). The Pontrjagin classes are calculated as follows:
PWRw) = 1+ 5
1+ (3j)%x?
(1+)2)°

k(1 +(3))2R
p() = ]_[( L(JJZ)XZ) :

p(¢j) =

and
k
PiE) =8 ) i*m;.
=1
(e) To apply the index theorem, we introduce two power sdrigsandg(x):

X |

h(x) = tanhx - ; aixz,
_1(h(3x) 2
g(x) = —(—h(x) —1) ;b.x .

Index(M) = (£L(O)h(x)**2, [CP(2K)])

k
= (L2, = [ﬂ(l +89(jx)™ h(x)2k+1]

2k

=1+8 Z m;(9()h() %)k

DILED) iy CORCIERE R TSR
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where(f(x))j denotes the cdicient of x! in the formal power serie$§(x). We shall use the
following notations:

Cli j2o -+ is) = (0(1109(j2%) - - - 9(i (Y ),
D(i1,iz2,...,ik)=C(4,...,1,2,...,2,...,K,...,K).
11 12 Ik
Then we have

Index(M)_1+SZmJC(j)+ZSS D (ri'll)---(?r)D(il,...,ik).

$>2  ipte+ik=s

(f) Since Index¥) =1, we have

k
Y mc+ et Y (Tl)---(r:")o(il,...,ik)=o. 1)
=1 =2 1 k

i1++ik=s

Out target is to show that;(¢) is divisible by 16 from the condition (1). This is equivalent
to the claim thatz'j‘:1 j?mj is even. This is also equivalent 10j:0d0M; is even. To simplify
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our notation we put = v»(k). This proof can be obtained if one can prove the following three
propositions:

Proposition A: If j is odd then»(C(j)) =r.

Proposition B: If j is even then,(C(j)) >r + 1.

Proposition C: If s> 2 thenv,(C(j1,...,Js) =1 +2-2s.
And at the time of 2010, we were able to solve the problem under the condition that

2. OUTLINE OF PROOF

We shall start attacking our Proposition A. We shall wrigék) = r. The following three lemmas
were already known in 2010.

Lemma 1. C(1) = (3 - (-1)4)/(4 - 3¥) andv»(C(1)) = .
To prove the second part we used the fa€§2 — 1) = vo(j% — 1) + v2(i) if j is odd.

Lemma 2.

c,...,1)
N —
S

1
((3 +X)5(1-x) )k—s

45\1-x 3+x (3+Xx)? B+ X)5/k-s

I R e s X (k= S+i\ 61 i)
_4S3k(3+(1) ; )|

Lemma3. (1) vo(a) = k(i) — Lforalli > 0,
(2) va(by) = k2(i) —1foralli > 1.

Both results follow from the general Leibniz rule.
From here we present our tools discovered in 2014. All results are obtained by elementary methods.

Lemma 4. Let X3, Xo, ..., X; be variables and < n<m. Then
X+ X+ +X)P" = (Xfm_n + XSM 4o+ XY mod p™L.

The proof of this lemma can be done by inductionronUsing this lemma, we can prove the
following lemma that enables us to evaluate the 2-order of th&icimats ofh(x)%«.

Lemma 5. Let f(X) = JisoaiX' € Zp)[[X]]. Then as to the cggcients of its g-th power (K)9 =
> X1, we haverp(@@) > vp(q) - vp(i).

Another tool is given by the next lemma.
Lemma 6. Letiy,io,...,is (S > 2) be nonnegative integers and assume that 0. Then
Kz(il) + K2(i2) + o+ K2(is) > Vz(il +ig+ -+ is) +1- V2(i1).

The proof of the lemma for the special case 2 is done first. The general case follows from the
special case and from the fact:

K2(i2) + -+ Kz(is) > K2(i2 + -0+ is).
Lemma?7. If s> 2, then
vo(CA,..., 1)) >r+2-2s
N—
S
From Lemma 2, we can show that
CL,...,1) = ((3“— (1)) + W(K))/(453%),
S————
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wherew(k) is a polynomial in Z)[K] with w(0) = 0. Therefore/>(w(k)) > r + 2. We also know that
v2(3X = (-1)K) > r + 2. This proves the lemma.

These last two lemmas are vitally important in proving our claims. Here we shall explain an outline
of the proofs of our propositions A, B and C.

Proof of Proposition A. Whenj = 1, Proposition A is true by Lemma 1. We assume thatodd
andj # 1. Take the dierence

C(h) - ) = (@) - oo™
= (@) -~ gOEINCY™) ~ Key trick!

(Z(JZI1 1)b;, XZIlZa' lezz (20) 3 2,3)

i1>1 io>0 i3>0

> (- haa®.

i1+io+iz=k,i1>1

Here we have

va((j21 - i, @,829) 2 (3+ va(in)) + (kalin) — 1) + (ka(iz) — 1) + v2(al™®)
= viy +k2(i1) + k2(i2) + 1 + V2(312k))

> va(k - ig) + 2+ vp(a?¥).

We putA = va(k — ig) + 2 + v2(@?). If i3 = 0, then we haveh = v5(K) + 2 = r + 2. If 0 < i3 and

va(iz) < 1, thenva(k — i3) > va(is) andva(a) > va(2K) — vi, = 1 + 1 - v(is). Therefore we have

A >r + 3. If va(iz) > r, then we havefz(k i3) = r. Thus we haveA > r + 2. This shows that

v2(C(j) — C(1)) = r + 2. Therefore we have,(C(j)) = r whenj is odd. This completes the proof of
Proposition A.

Proof of Proposition B. When | is even, we have
: 2
ci)= > iPb,a,a.
i1+i2+i3:k,i1>1
We putB = vo(j21by, &, .(fk)). Then we have

B > 2iy + ky(in) + ka(iz) — 2+ va(@Z) = va(k — i) + 21 — va(iz) - 1+ vo(a™).

From this it is not hard to see thBt> r + 1. This proves Proposition B.
Proof of Proposition C. If there is at least one even numberjin. .., js, then the proof proceeds in
the same manner as the proof of Proposition B. If all numbers ., js are odd, then we can show
that

VZ(C(jl"" aJS)_C(ly’l))Z r+2-2s
using a similar argument as in the proof of Proposition A.
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