FIRST PONTRJAGIN CLASSES OF MANIFOLDS HOMOTOPY EQUIVALENT TO $\mathbb{C} P(2 k)$

YASUHIKO KITADA AND MAKI NAGURA

1. Introduction

The purpose of this note is to give a rough sketch of the proof of our main theorem.

Main Theorem

Let $f: M^{4 k} \rightarrow \mathbb{C} P(2 k)$ be a homotopy equivalence where $M^{4 k}$ is a closed smooth manifold. Then the difference of the fist Pontrjagin classes $\delta_{1}(M)=p_{1}(M)-f^{*}\left(p_{1}(\mathbb{C} P(2 k))\right)$ is divisible by 16.

Notations used in this note:

- $v_{p}(n)$: the p-order of $n \in \mathbb{Z} \backslash\{0\}$ is the exponent of the prime p in the prime factorization of n. $v_{p}(0):=\infty$.
- $v_{p}(a / b):=v_{p}(a)-v_{p}(b)$ for $a \in \mathbb{Z}, b \in \mathbb{Z} \backslash\{0\}$.
- $\mathbb{Z}_{(p)}$: the ring of integers localized at the prime p, i.e. $\mathbb{Z}_{(p)}=\{a / b \mid a \in \mathbb{Z}, b \in \mathbb{Z} \backslash\{0\},(b, p)=1\}$.
- $\kappa_{p}(n):=\sum_{i} n_{i}$ for $n \in \mathbb{Z}_{+}, n=\sum_{i} n_{i} p^{i}$ and $0 \leq n_{i} \leq p-1$.
- $(f(x))^{q}=\sum_{i \geq 0} \alpha_{i}^{(q)} x^{i}$ for a formal power series $f(x)=\sum_{i \geq 0} \alpha_{i} x^{i}$.

We first present a short history of the partial but successful solutions to our problem.

- 1970, Brumfiel for $k=2$ and 3, [1].
- 2003, K. for $k=4$.
- 2004, Igarashi(Master thesis), $k \leq 31$.
- 2009, K. for k with $v_{2}(k) \leq 4$, published in 2012 [2].
- 2010, K. for k with $v_{2}(k) \leq 5$, oral announcement.

The proof of our claim gets harder as the 2 -order of k increases. If you go over a mountain, you face a much higher mountain standing in front of you. It seemed that there was no hope to go over all the infinite number of mountains in a finite lifetime. But in the fall of 2014, in a discussion of our joint work, we finally found a hint of trick to circumvent the obstacles to our final goal. Here is our story. We begin reviewing our research up to 2010.
(a) Let $f: M^{4 h} \rightarrow \mathbb{C} P(2 k)$ be a homotopy smoothing. Then there exists a fiber homotopically trivial vector bundle ζ over $\mathbb{C} P(2 k)$ such that the tangent bundle $\tau(M)$ is stably isomorphic to the pull-back of $\tau(\mathbb{C} P(2 k)) \oplus \zeta$ by f :

$$
\tau(M) \stackrel{s}{\sim} f^{*}(\tau(\mathbb{C} P(2 k)) \oplus \zeta)
$$

(b) Using Hirzebruch's index theorem to $M^{4 k}$, we see that

$$
\operatorname{Index}(M)=\langle\mathcal{L}(M),[M]\rangle=\left\langle\mathcal{L}(\zeta)(x / \tanh x)^{2 k+1},[\mathbb{C} P(2 k)]\right\rangle
$$

Since $\delta_{1}(M)$ is nothing but $f^{*}\left(p_{1}(\zeta)\right)$, we have to study the bundle ζ when $\operatorname{Index}(M)=1$.
(c) Let η be the canonical complex line bundle over $\mathbb{C} P(2 k)$ and its first Chern class $c_{1}(\eta)=x$ is a generator of the cohomology ring $H^{*}(\mathbb{C} P(2 k), \mathbb{Z})=\mathbb{Z}[x] /\left(x^{2 k+1}\right)$. Let $\omega \in \widetilde{K O}(\mathbb{C} P(2 k))$ be the realification of $\eta-1_{C} \in \widetilde{K}(\mathbb{C} P(2 k))$. It is known that $\widetilde{K O}(\mathbb{C} P(2 k))$ is a free abelian group generated by $\omega^{j}(j=1,2, \ldots, k)$. We take another set of generators $\psi_{R}^{j}(\omega)(j=1,2 \ldots, k)$, where ψ_{R}^{j} is the real j-th Adams operation.
(d) According to the positive solution of the Adams-conjecture, the kernel of the J-map coincides with Image $\left(\psi_{R}^{3}-1\right)$ when localized at 2 . Therefore when we put $\zeta_{j}=\left(\psi_{R}^{3}-1\right) \psi_{R}^{j}(\omega)$, then the fiber homotopically trivial vector bundle ζ can be written as

$$
\zeta=m_{1} \zeta_{1}+m_{2} \zeta_{2}+\cdots+m_{k} \zeta_{k}
$$

where m_{j} belong to $\mathbb{Z}_{(2)}$. The Pontrjagin classes are calculated as follows:

$$
\begin{gathered}
p\left(\psi_{R}^{j} \omega\right)=1+j^{2} x^{2}, \\
p\left(\zeta_{j}\right)=\frac{1+(3 j)^{2} x^{2}}{\left(1+j^{2} x^{2}\right)}, \\
p(\zeta)=\prod_{j=1}^{k}\left(\frac{1+(3 j)^{2} x^{2}}{1+j^{2} x^{2}}\right)^{m_{j}},
\end{gathered}
$$

and

$$
p_{1}(\zeta)=8 \sum_{j=1}^{k} j^{2} m_{j}
$$

(e) To apply the index theorem, we introduce two power series $h(x)$ and $g(x)$:

$$
\begin{gathered}
h(x)=\frac{x}{\tanh x}=\sum_{i \geq 0} a_{i} x^{2 i}, \\
g(x)=\frac{1}{8}\left(\frac{h(3 x)}{h(x)}-1\right)=\sum_{i \geq 1} b_{i} x^{2 i} . \\
\text { Index }(M)=\left\langle\mathcal{L}(\zeta) h(x)^{2 k+1},[\mathbb{C} P(2 k)]\right\rangle \\
=\left(\mathcal{L}(\zeta) h(x)^{2 k+1}\right)_{2 k}=\left(\prod_{j=1}^{k}(1+8 g(j x))^{m_{j}} h(x)^{2 k+1}\right)_{2 k} \\
=1+8 \sum_{j=1}^{k} m_{j}\left(g(j x) h(x)^{2 k+1}\right)_{2 k} \\
\quad+\sum_{s \geq 2} 8^{s} \sum_{i_{1}+\cdots+i_{k}=s}\binom{m_{1}}{i_{1}} \cdots\binom{m_{k}}{i_{k}}\left(g(x)^{i_{1}} g(2 x)^{i_{2}} \cdots g(k x)^{i_{k}} h(x)^{2 k+1}\right)_{2 k},
\end{gathered}
$$

where $(f(x))_{j}$ denotes the coefficient of x^{j} in the formal power series $f(x)$. We shall use the following notations:

$$
\begin{aligned}
C\left(j_{1}, j_{2}, \cdots, j_{s}\right) & =\left(g\left(j_{1} x\right) g\left(j_{2} x\right) \cdots g\left(j_{s} x\right) h(x)^{2 k+1}\right)_{2 k}, \\
D\left(i_{1}, i_{2}, \ldots, i_{k}\right) & =C(\underbrace{1, \ldots, 1}_{i_{1}}, \underbrace{2, \ldots, 2}_{i_{2}}, \ldots, \underbrace{k, \ldots, k}_{i_{k}} .
\end{aligned}
$$

Then we have

$$
\operatorname{Index}(M)=1+8 \sum_{j=1}^{k} m_{j} C(j)+\sum_{s \geq 2} 8^{s} \sum_{i_{1}+\cdots+i_{k}=s}\binom{m_{1}}{i_{1}} \ldots\binom{m_{k}}{i_{k}} D\left(i_{1}, \ldots, i_{k}\right)
$$

(f) Since $\operatorname{Index}(M)=1$, we have

$$
\begin{equation*}
\sum_{j=1}^{k} m_{j} C(j)+\sum_{s \geq 2} 8^{s-1} \sum_{i_{1}+\cdots+i_{k}=s}\binom{m_{1}}{i_{1}} \cdots\binom{m_{k}}{i_{k}} D\left(i_{1}, \ldots, i_{k}\right)=0 . \tag{1}
\end{equation*}
$$

Out target is to show that $p_{1}(\zeta)$ is divisible by 16 from the condition (1). This is equivalent to the claim that $\sum_{j=1}^{k} j^{2} m_{j}$ is even. This is also equivalent to $\sum_{j: o d d} m_{j}$ is even. To simplify
our notation we put $r=v_{2}(k)$. This proof can be obtained if one can prove the following three propositions:

Proposition A: If j is odd then $v_{2}(C(j))=r$.
Proposition B: If j is even then $v_{2}(C(j)) \geq r+1$.
Proposition C: If $s \geq 2$ then $v_{2}\left(C\left(j_{1}, \ldots, j_{s}\right) \geq r+2-2 s\right.$.
And at the time of 2010, we were able to solve the problem under the condition that $r \leq 5$.

2. Outline of proof

We shall start attacking our Proposition A. We shall write $v_{2}(k)=r$. The following three lemmas were already known in 2010.
Lemma 1. $C(1)=\left(3^{k}-(-1)^{k}\right) /\left(4 \cdot 3^{k}\right)$ and $v_{2}(C(1))=r$.
To prove the second part we used the fact $v_{2}\left(j^{2 i}-1\right)=v_{2}\left(j^{2}-1\right)+v_{2}(i)$ if j is odd.

Lemma 2.

$$
\begin{aligned}
C(\underbrace{1, \ldots, 1}_{s}) & =\left(\frac{1}{(3+x)^{s}(1-x)}\right)_{k-s} \\
& =\frac{1}{4^{s}}\left(\frac{1}{1-x}+\frac{1}{3+x}+\frac{4}{(3+x)^{2}}+\cdots+\frac{4^{s-1}}{(3+x)^{s}}\right)_{k-s} \\
& =\frac{1}{4^{s} 3^{k}}\left(3^{k}+(-1)^{k-s} \sum_{i=0}^{s-1}\binom{k-s+i}{i} 3^{s-1-i} 4^{i}\right) .
\end{aligned}
$$

Lemma 3. (1) $\quad v_{2}\left(a_{i}\right)=\kappa_{2}(i)-1$ for all $i \geq 0$,
(2) $\quad v_{2}\left(b_{i}\right)=\kappa_{2}(i)-1$ for all $i \geq 1$.

Both results follow from the general Leibniz rule.
From here we present our tools discovered in 2014. All results are obtained by elementary methods.
Lemma 4. Let $X_{1}, X_{2}, \ldots, X_{t}$ be variables and $0 \leq n \leq m$. Then

$$
\left(X_{1}+X_{2}+\cdots+X_{t}\right)^{p^{m}} \equiv\left(X_{1}^{p^{m-n}}+X_{2}^{p^{m-n}}+\cdots+X_{t}^{p^{m-n}}\right)^{p^{n}} \quad \bmod p^{n+1}
$$

The proof of this lemma can be done by induction on n. Using this lemma, we can prove the following lemma that enables us to evaluate the 2-order of the coefficients of $h(x)^{2 k}$.

Lemma 5. Let $f(X)=\sum_{i \geq 0} \alpha_{i} X^{i} \in \mathbb{Z}_{(p)}[[X]]$. Then as to the coefficients of its q-th power $f(X)^{q}=$ $\sum_{i} \alpha_{i}^{(q)} X^{i}$, we have $v_{p}\left(\alpha_{i}^{(q)}\right) \geq v_{p}(q)-v_{p}(i)$.

Another tool is given by the next lemma.
Lemma 6. Let $i_{1}, i_{2}, \ldots, i_{s}(s \geq 2)$ be nonnegative integers and assume that $i_{1}>0$. Then

$$
\kappa_{2}\left(i_{1}\right)+\kappa_{2}\left(i_{2}\right)+\cdots+\kappa_{2}\left(i_{s}\right) \geq v_{2}\left(i_{1}+i_{2}+\cdots+i_{s}\right)+1-v_{2}\left(i_{1}\right)
$$

The proof of the lemma for the special case $s=2$ is done first. The general case follows from the special case and from the fact:

$$
\kappa_{2}\left(i_{2}\right)+\cdots+\kappa_{2}\left(i_{s}\right) \geq \kappa_{2}\left(i_{2}+\cdots+i_{s}\right)
$$

Lemma 7. If $s \geq 2$, then

$$
v_{2}(C(\underbrace{1, \ldots, 1}_{s})) \geq r+2-2 s .
$$

From Lemma 2, we can show that

$$
C(\underbrace{1, \ldots, 1}_{s})=\left(\left(3^{k}-(-1)^{k}\right)+w(k)\right) /\left(4^{s} 3^{k}\right),
$$

where $w(k)$ is a polynomial in $4 \mathbb{Z}_{(2)}[k]$ with $w(0)=0$. Therefore $v_{2}(w(k)) \geq r+2$. We also know that $v_{2}\left(3^{k}-(-1)^{k}\right) \geq r+2$. This proves the lemma.

These last two lemmas are vitally important in proving our claims. Here we shall explain an outline of the proofs of our propositions A, B and C.
Proof of Proposition A. When $j=1$, Proposition A is true by Lemma 1. We assume that j is odd and $j \neq 1$. Take the difference

$$
\begin{aligned}
C(j)-C(1) & =\left((g(j x)-g(x)) \underline{h(x)^{2 k+1}}\right)_{2 k} \\
& =\left((g(j x)-g(x)) \underline{h(x) h(x)^{2 k}}\right)_{2 k} \quad \text { Key trick! } \\
& =\left(\sum_{i_{1} \geq 1}\left(j^{2 i_{1}}-1\right) b_{i_{1}} x^{2 i_{1}} \sum_{i_{2} \geq 0} a_{i_{2}} x^{2 i_{2}} \sum_{i_{3} \geq 0} a_{i_{3}}^{(2 k)} x^{2 i_{3}}\right)_{2 k} \\
& =\sum_{i_{1}+i_{2}+i_{3}=k, i_{1} \geq 1}\left(j^{2 i_{1}}-1\right) b_{i_{1}} a_{i_{2}} a_{i_{3}}^{(2 k)} .
\end{aligned}
$$

Here we have

$$
\begin{aligned}
v_{2}\left(\left(j^{2 i_{1}}-1\right) b_{i_{1}} a_{i_{2}} a_{i_{3}}^{(2 k)}\right) & \geq\left(3+v_{2}\left(i_{1}\right)\right)+\left(\kappa_{2}\left(i_{1}\right)-1\right)+\left(\kappa_{2}\left(i_{2}\right)-1\right)+v_{2}\left(a_{i_{3}}^{(2 k)}\right) \\
& =v_{i_{1}}+\kappa_{2}\left(i_{1}\right)+\kappa_{2}\left(i_{2}\right)+1+v_{2}\left(a_{i_{3}}^{(2 k)}\right) \\
& \geq v_{2}\left(k-i_{3}\right)+2+v_{2}\left(a_{i_{3}}^{(2 k)}\right)
\end{aligned}
$$

We put $A=v_{2}\left(k-i_{3}\right)+2+v_{2}\left(a_{i_{3}}^{(2 k)}\right)$. If $i_{3}=0$, then we have $A=v_{2}(k)+2=r+2$. If $0<i_{3}$ and $v_{2}\left(i_{3}\right) \leq r$, then $v_{2}\left(k-i_{3}\right) \geq v_{2}\left(i_{3}\right)$ and $v_{2}\left(a_{i_{3}}^{(2 k)}\right) \geq v_{2}(2 k)-v_{i_{3}}=r+1-v_{2}\left(i_{3}\right)$. Therefore we have $A \geq r+3$. If $v_{2}\left(i_{3}\right)>r$, then we have $v_{2}\left(k-i_{3}\right)=r$. Thus we have $A \geq r+2$. This shows that $v_{2}(C(j)-C(1)) \geq r+2$. Therefore we have $v_{2}(C(j))=r$ when j is odd. This completes the proof of Proposition A.
Proof of Proposition B. When j is even, we have

$$
C(j)=\sum_{i_{1}+i_{2}+i_{3}=k, i_{1} \geq 1} j^{2 i_{1}} b_{i_{1}} a_{i_{2}} a_{i_{3}}^{(2 k)} .
$$

We put $B=v_{2}\left(j^{2 i_{1}} b_{i_{1}} a_{i_{2}} a_{i_{3}}^{(2 k)}\right)$. Then we have

$$
B \geq 2 i_{1}+\kappa_{2}\left(i_{1}\right)+\kappa_{2}\left(i_{2}\right)-2+v_{2}\left(a_{i_{3}}^{(2 k)}\right)=v_{2}\left(k-i_{3}\right)+2 i_{1}-v_{2}\left(i_{1}\right)-1+v_{2}\left(a_{i_{3}}^{(2 k)}\right)
$$

From this it is not hard to see that $B \geq r+1$. This proves Proposition B.
Proof of Proposition C. If there is at least one even number in j_{1}, \ldots, j_{s}, then the proof proceeds in the same manner as the proof of Proposition B. If all numbers j_{1}, \ldots, j_{s} are odd, then we can show that

$$
v_{2}\left(C\left(j_{1}, \cdots, j_{s}\right)-C(1, \ldots, 1)\right) \geq r+2-2 s
$$

using a similar argument as in the proof of Proposition A.

References

[1] BRUMFIEL, G., Homotopy equivalences of almost smooth manifolds, Comment. Math. Helv. 46 (1971), 381-407.
[2] KITADA, Y., On the first Pontrjagin class of homotopy complex projective spaces, Math. Slovaca, 62(2012), No. 3, 551-566.
(Y. Kitada) Yokohama National University

E-mail address, Y. Kitada: ykitada@ynu. ac.jp
(M. Nagura) Yokohama National University

E-mail address, M. Nagura: maki@ynu. ac. jp

