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1. Introduction

The purpose of this note is to give a rough sketch of the proof of our main theorem.

Main Theorem� �
Let f : M4k → CP(2k) be a homotopy equivalence whereM4k is a closed smooth manifold.
Then the difference of the fist Pontrjagin classesδ1(M) = p1(M)− f ∗(p1(CP(2k))) is divisible by
16.� �

Notations used in this note:
• νp(n) : the p-order of n ∈ Z \ {0} is the exponent of the primep in the prime factorization of

n. νp(0)B ∞.
• νp(a/b) B νp(a) − νp(b) for a ∈ Z,b ∈ Z \ {0}.
• Z(p) : the ring of integers localized at the primep, i.e.Z(p) = {a/b|a ∈ Z,b ∈ Z\{0}, (b, p) = 1}.
• κp(n) B

∑
i ni for n ∈ Z+, n =

∑
i ni pi and 0≤ ni ≤ p− 1.

• ( f (x))q =
∑

i≥0α
(q)
i xi for a formal power seriesf (x) =

∑
i≥0αi xi .

We first present a short history of the partial but successful solutions to our problem.

• 1970, Brumfiel fork = 2 and 3, [1].
• 2003, K. fork = 4.
• 2004, Igarashi(Master thesis),k ≤ 31.
• 2009, K. fork with ν2(k) ≤ 4, published in 2012 [2].
• 2010, K. fork with ν2(k) ≤ 5, oral announcement.

The proof of our claim gets harder as the 2-order ofk increases. If you go over a mountain, you
face a much higher mountain standing in front of you. It seemed that there was no hope to go over
all the infinite number of mountains in a finite lifetime. But in the fall of 2014, in a discussion of our
joint work, we finally found a hint of trick to circumvent the obstacles to our final goal. Here is our
story. We begin reviewing our research up to 2010.

(a) Let f : M4h → CP(2k) be a homotopy smoothing. Then there exists a fiber homotopically
trivial vector bundleζ overCP(2k) such that the tangent bundleτ(M) is stably isomorphic to
the pull-back ofτ(CP(2k)) ⊕ ζ by f :

τ(M) s∼ f ∗(τ(CP(2k)) ⊕ ζ).
(b) Using Hirzebruch’s index theorem toM4k, we see that

Index(M) = ⟨L(M), [M]⟩ = ⟨L(ζ)(x/ tanhx)2k+1, [CP(2k)]⟩.
Sinceδ1(M) is nothing butf ∗(p1(ζ)), we have to study the bundleζ when Index(M) = 1.

(c) Let η be the canonical complex line bundle overCP(2k) and its first Chern classc1(η) = x is
a generator of the cohomology ringH∗(CP(2k),Z) = Z[x]/(x2k+1). Letω ∈ K̃O(CP(2k)) be
the realification ofη − 1C ∈ K̃(CP(2k)). It is known thatK̃O(CP(2k)) is a free abelian group
generated byω j ( j = 1, 2, . . . , k). We take another set of generatorsψ j

R(ω) ( j = 1,2 . . . , k),

whereψ j
R is the realj-th Adams operation.
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(d) According to the positive solution of the Adams-conjecture, the kernel of theJ-map coincides
with Image(ψ3

R− 1) when localized at 2. Therefore when we putζ j = (ψ3
R− 1)ψ j

R(ω), then the
fiber homotopically trivial vector bundleζ can be written as

ζ = m1ζ1 +m2ζ2 + · · · +mkζk,

wheremj belong toZ(2). The Pontrjagin classes are calculated as follows:

p(ψ j
Rω) = 1+ j2x2,

p(ζ j) =
1+ (3 j)2x2

(1+ j2x2)
,

p(ζ) =
k∏

j=1

(
1+ (3 j)2x2

1+ j2x2

)mj

,

and

p1(ζ) = 8
k∑

j=1

j2mj .

(e) To apply the index theorem, we introduce two power seriesh(x) andg(x):

h(x) =
x

tanhx
=

∑
i≥0

ai x
2i ,

g(x) =
1
8

(
h(3x)
h(x)

− 1

)
=

∑
i≥1

bi x
2i .

Index(M) = ⟨L(ζ)h(x)2k+1, [CP(2k)]⟩

=
(
L(ζ)h(x)2k+1

)
2k
=

 k∏
j=1

(1+ 8g( jx))mj h(x)2k+1


2k

= 1+ 8
k∑

j=1

mj(g( jx)h(x)2k+1)2k

+
∑
s≥2

8s
∑

i1+···+ik=s

(
m1

i1

)
· · ·

(
mk

ik

)(
g(x)i1g(2x)i2 · · · g(kx)ikh(x)2k+1

)
2k
,

where
(
f (x)

)
j denotes the coefficient of x j in the formal power seriesf (x). We shall use the

following notations:

C( j1, j2, · · · , js) = (g( j1x)g( j2x) · · · g( jsx)h(x)2k+1)2k,

D(i1, i2, . . . , ik) = C(1, . . . , 1︸  ︷︷  ︸
i1

,2, . . . ,2︸  ︷︷  ︸
i2

, . . . , k, . . . , k︸  ︷︷  ︸
ik

).

Then we have

Index(M) = 1+ 8
k∑

j=1

mjC( j) +
∑
s≥2

8s
∑

i1+···+ik=s

(
m1

i1

)
· · ·

(
mk

ik

)
D(i1, . . . , ik).

(f) Since Index(M) = 1, we have
k∑

j=1

mjC( j) +
∑
s≥2

8s−1
∑

i1+···+ik=s

(
m1

i1

)
· · ·

(
mk

ik

)
D(i1, . . . , ik) = 0. (1)

Out target is to show thatp1(ζ) is divisible by 16 from the condition (1). This is equivalent
to the claim that

∑k
j=1 j2mj is even. This is also equivalent to

∑
j:oddmj is even. To simplify
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our notation we putr = ν2(k). This proof can be obtained if one can prove the following three
propositions:

Proposition A: If j is odd thenν2(C( j)) = r.
Proposition B: If j is even thenν2(C( j)) ≥ r + 1.
Proposition C: If s≥ 2 thenν2(C( j1, . . . , js) ≥ r + 2− 2s.

And at the time of 2010, we were able to solve the problem under the condition thatr ≤ 5.

2. Outline of proof

We shall start attacking our Proposition A. We shall writeν2(k) = r. The following three lemmas
were already known in 2010.

Lemma 1. C(1) = (3k − (−1)k)/(4 · 3k) andν2(C(1)) = r.

To prove the second part we used the factν2( j2i − 1) = ν2( j2 − 1)+ ν2(i) if j is odd.

Lemma 2.

C(1, . . . , 1︸  ︷︷  ︸
s

) =

(
1

(3+ x)s(1− x)

)
k−s

=
1
4s

( 1
1− x

+
1

3+ x
+

4
(3+ x)2

+ · · · + 4s−1

(3+ x)s

)
k−s

=
1

4s3k

(
3k + (−1)k−s

s−1∑
i=0

(
k− s+ i

i

)
3s−1−i4i

)
.

Lemma 3. (1) ν2(ai) = κ2(i) − 1 for all i ≥ 0,
(2) ν2(bi) = κ2(i) − 1 for all i ≥ 1.

Both results follow from the general Leibniz rule.
From here we present our tools discovered in 2014. All results are obtained by elementary methods.

Lemma 4. Let X1,X2, . . . ,Xt be variables and0 ≤ n ≤ m. Then

(X1 + X2 + · · · + Xt)
pm ≡ (Xpm−n

1 + Xpm−n

2 + · · · + Xpm−n

t )pn
mod pn+1.

The proof of this lemma can be done by induction onn. Using this lemma, we can prove the
following lemma that enables us to evaluate the 2-order of the coefficients ofh(x)2k.

Lemma 5. Let f(X) =
∑

i≥0αiXi ∈ Z(p)[[X]] . Then as to the coefficients of its q-th power f(X)q =∑
i α

(q)
i Xi , we haveνp(α(q)

i ) ≥ νp(q) − νp(i).

Another tool is given by the next lemma.

Lemma 6. Let i1, i2, . . . , is (s≥ 2) be nonnegative integers and assume that i1 > 0. Then

κ2(i1) + κ2(i2) + · · · + κ2(is) ≥ ν2(i1 + i2 + · · · + is) + 1− ν2(i1).

The proof of the lemma for the special cases = 2 is done first. The general case follows from the
special case and from the fact:

κ2(i2) + · · · + κ2(is) ≥ κ2(i2 + · · · + is).

Lemma 7. If s ≥ 2, then
ν2(C(1, . . . ,1︸  ︷︷  ︸

s

)) ≥ r + 2− 2s.

From Lemma 2, we can show that

C(1, . . . ,1︸  ︷︷  ︸
s

) =
(
(3k − (−1)k) + w(k)

)
/(4s3k),
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wherew(k) is a polynomial in 4Z(2)[k] with w(0) = 0. Thereforeν2(w(k)) ≥ r + 2. We also know that
ν2(3k − (−1)k) ≥ r + 2. This proves the lemma.

These last two lemmas are vitally important in proving our claims. Here we shall explain an outline
of the proofs of our propositions A, B and C.

Proof of Proposition A. When j = 1, Proposition A is true by Lemma 1. We assume thatj is odd
and j , 1. Take the difference

C( j) −C(1) =
(
(g( jx) − g(x))h(x)2k+1

)
2k

=

(
(g( jx) − g(x))h(x)h(x)2k

)
2k

Key trick!

=

(∑
i1≥1

( j2i1 − 1)bi1 x2i1
∑
i2≥0

ai2 x2i2
∑
i3≥0

a(2k)
i3

x2i3
)
2k

=
∑

i1+i2+i3=k,i1≥1

( j2i1 − 1)bi1ai2a
(2k)
i3
.

Here we have

ν2(( j2i1 − 1)bi1ai2a
(2k)
i3

) ≥ (3+ ν2(i1)) + (κ2(i1) − 1)+ (κ2(i2) − 1)+ ν2(a(2k)
i3

)

= νi1 + κ2(i1) + κ2(i2) + 1+ ν2(a(2k)
i3

)

≥ ν2(k− i3) + 2+ ν2(a(2k)
i3

).

We putA = ν2(k − i3) + 2 + ν2(a(2k)
i3

). If i3 = 0, then we haveA = ν2(k) + 2 = r + 2. If 0 < i3 and

ν2(i3) ≤ r , thenν2(k − i3) ≥ ν2(i3) andν2(a(2k)
i3

) ≥ ν2(2k) − νi3 = r + 1 − ν2(i3). Therefore we have
A ≥ r + 3. If ν2(i3) > r, then we haveν2(k − i3) = r. Thus we haveA ≥ r + 2. This shows that
ν2(C( j) −C(1)) ≥ r + 2. Therefore we haveν2(C( j)) = r when j is odd. This completes the proof of
Proposition A.

Proof of Proposition B. When j is even, we have

C( j) =
∑

i1+i2+i3=k,i1≥1

j2i1bi1ai2a
(2k)
i3

.

We putB = ν2( j2i1bi1ai2a
(2k)
i3

). Then we have

B ≥ 2i1 + κ2(i1) + κ2(i2) − 2+ ν2(a(2k)
i3

) = ν2(k− i3) + 2i1 − ν2(i1) − 1+ ν2(a(2k)
i3

).

From this it is not hard to see thatB ≥ r + 1. This proves Proposition B.

Proof of Proposition C. If there is at least one even number inj1, . . . , js, then the proof proceeds in
the same manner as the proof of Proposition B. If all numbersj1, . . . , js are odd, then we can show
that

ν2(C( j1, · · · , js) −C(1, . . . ,1)) ≥ r + 2− 2s

using a similar argument as in the proof of Proposition A.
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