SMOOTH ACTIONS ON COMPLEX PROJECTIVE SPACES

KRZYSZTOF M. PAWAŁOWSKI

An almost complex structure on a smooth manifold M of dimension 2n (for an integer $n \geq 1$) is a fiberwise complex structure on the tangent bundle T(M), i.e., an automorphism $J: T(M) \to T(M)$ of real vector bundles, such that $J^2 = -\mathrm{id}$.

A smooth manifold M of dimension 2n is called *homotopically symplectic* if M is almost complex (i.e., M admits an almost complex structure) and there exists an element $x \in H^2(M; \mathbb{R})$ such that $x^n \neq 0$.

A smooth manifold M of dimension 2n is called *symplectic* if M is equipped with a *symplectic form*, i.e., a differential 2-form ω on M which is both closed $(d\omega = 0)$ and nondegenerate (ω^n) is a volume form on M, $\omega^n \neq 0$.

A stable almost complex structure on a smooth manifold M of dimension m (for an integer $m \geq 1$) is a fiberwise complex structure on the Whitney sum

$$T(M) \oplus \mathbb{R}^k$$
 for an integer $k \geq 0$ with $m + k = 2n$,

where \mathbb{R}^k denotes the product vector bundle $M \times \mathbb{R}^k$ over M.

We have defined four classes of manifolds:

symplectic \subset homotopically symplectic \subset \subset almost complex \subset stable almost complex.

The goal of the lecture is to present constructions of smooth actions of compact Lie groups G on complex projective spaces, such that the manifold M consisting of points fixed under the action of G in question has a specific geometric structure while missing another one. Precisely speaking, we show how to construct a smooth action of G on a complex projective space $\mathbb{C}\mathrm{P}^n$ so that the G-fixed point set

- (1) M is stable almost complex and M is not almost complex, or
- (2) M is almost complex and M is not homotopically symplectic, or
- (3) M is homotopically symplectic and M is not symplectic.

Smooth actions that we construct show that, in general, geometric structures (almost complex, homotopically symplectic, and symplectic) present on $\mathbb{C}P^n$ do not appear on the manifold M occurring as the G-fixed point set in $\mathbb{C}P^n$. Hence, smooth actions, almost complex actions, homotopically symplectic actions, and symplectic actions of compact Lie groups G on $\mathbb{C}P^n$ form different classes of groups of transformations on $\mathbb{C}P^n$.

REFERENCES

- [1] M. Audin, Torus Actions on Symplectic Manifolds, Birkhäuser, 2004.
- [2] F. Catanese, G. Tian, (Editors), Symplectic 4-Manifolds and Algebraic Surfaces, Lecture Notes in Mathematics, Vol. 1938, Springer, 2008.
- [3] B. Hajduk, K. Pawałowski, A. Tralle, Non-symplectic smooth circle actions on symplectic manifolds, Mathematica Slovaca, Vol. 62 (2012), 539-550.
- [4] M. Kaluba, W. Politarczyk, Non-symplectic actions on complex projective spaces, Journal of Symplectic Geometry, Vol. 10 (2012), 17–26.
- [5] O. Randal-Williams, On diffeomorphisms acting on almost complex structures, preprint.