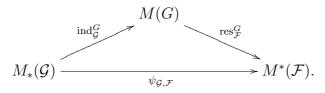
Limits of The Burnside Rings and Their Relations

Masaharu Morimoto and Masafumi Sugimura

Graduate School of Natural Science and Technology, Okayama University

Let G be a finite group, let $\mathcal{S}(G)$ denote the set of all subgroups of G, and let \mathcal{F} and \mathcal{G} be subsets of $\mathcal{S}(G)$ each of which is closed under taking conjugations and subgroups of its members. For a Mackey functor $M = (M^*, M_*)$ on G, there are the inverse limit $M^*(\mathcal{F})$, the direct limit $M_*(\mathcal{G})$, and the commutative diagram



The groups $Q_M(\mathcal{G}, \mathcal{F})$ and $Q_M(G, \mathcal{F})$ are defined by

 $Q_M(\mathcal{G},\mathcal{F}) = M^*(\mathcal{F})/\psi_{\mathcal{G},\mathcal{F}}(M_*(\mathcal{G}))$ and $Q_M(G,\mathcal{F}) = Q_M(\mathcal{S}(G),\mathcal{F}).$

For a finite group K, we denote by A(K) the Burnside ring of K. The Burnside ring functor $A = (A^*, A_*)$ on G, where $A^*(H) = A(H) = A_*(H)$ for $H \in \mathcal{S}(G)$, is a Green ring functor on G, and hence a Mackey functor on G in the sense of A. Bak. We are interested in the quotient $Q_A(G, \mathcal{F})$, especially for the case $\mathcal{F} = \mathcal{F}_G := \mathcal{S}(G) \setminus \{G\}$.

Y. Hara and M. Morimoto showed that $Q_A(G, \mathcal{F})$ is a finite group and that in the case where G is nilpotent, $Q_A(G, \mathcal{F}_G)$ is trivial if and only if the order of G is a product of distinct primes (hence G is cyclic).

Let k_G denote the product of (distinct) primes p such that G possesses a normal subgroup of index p. For a prime p, let G^p denote the smallest normal subgroup N of G such that |G/N| is a power of p. Let G^{nil} denote the smallest normal subgroup N of G such that G/N is nilpotent.

Theorem 1. The following (1) and (2) hold via canonical isomorphisms.

(1)
$$k_G Q_A(G, \mathcal{F}_G) = O$$
 and $Q_A(G, \mathcal{F}_G) = \prod_{p \mid k_G} Q_A(G, \mathcal{F}_G) \otimes \mathbb{Z}_p$ (p prime).

(2)
$$Q_A(G, \mathcal{F}_G) = Q_A(G/G^{\operatorname{nil}}, \mathcal{F}_{G/G^{\operatorname{nil}}}) = \prod_{p \mid k_G} Q_A(G/G^p, \mathcal{F}_{G/G^p})$$
 (p prime).

Corollary 2. $Q_A(G, \mathcal{F}_G) = O$ if and only if G/G^{nil} is a cyclic group such that $|G/G^{\text{nil}}|$ is a product of distinct primes.

We will also report computations of $Q_A(G, \mathcal{F}_G)$ for some abelian *p*-groups *G*.