

Michael Wiemeler (joint with Lee Kennard and Burkhard Wilking)

20th November 2019

living.knowledge

A question and a problem.

Question

What are the topological implications of positive sectional curvature?

A question and a problem.

Question

What are the topological implications of positive sectional curvature?

Problem

Classify manifolds admitting metrics of positive sectional curvature.

Examples of positively curved manifolds.

There are only very few examples of manifolds admitting metrics of positive sectional curvature.

Examples of positively curved manifolds.

- There are only very few examples of manifolds admitting metrics of positive sectional curvature.
- For dim M > 24 all known examples are diffeomorphic to S^n , $\mathbb{C}P^n$, or $\mathbb{H}P^n$.

Examples of positively curved manifolds.

- There are only very few examples of manifolds admitting metrics of positive sectional curvature.
- For dim M > 24 all known examples are diffeomorphic to S^n , $\mathbb{C}P^n$, or $\mathbb{H}P^n$.
- Other examples are known in dimensions 6, 7, 12, 13 and 24
- These are certain homogeneous spaces and biquotient spaces.

Topological implications of positive curvature.

For closed manifolds *M* the following is known:

Classical results

Theorem of Gauß-Bonnet: $sec(M^2) > 0 \Rightarrow M$ is diffeomorphic to S^2 or $\mathbb{R}P^2$.

Topological implications of positive curvature.

For closed manifolds *M* the following is known:

Classical results

- Theorem of Gauß-Bonnet: $sec(M^2) > 0 \Rightarrow M$ is diffeomorphic to S^2 or $\mathbb{R}P^2$.
- Theorem of Synge: $\sec(M^{2n}) > 0 \Rightarrow |\pi_1(M)| \le 2$.
- Theorem of Bonnet-Myers: $\operatorname{Ric}(M^n) > 0 \Rightarrow |\pi_1(M)| < \infty$.

Topological implications of positive curvature.

For closed manifolds *M* the following is known:

Classical results

- Theorem of Gauß-Bonnet: $sec(M^2) > 0 \Rightarrow M$ is diffeomorphic to S^2 or $\mathbb{R}P^2$.
- Theorem of Synge: $\sec(M^{2n}) > 0 \Rightarrow |\pi_1(M)| \le 2$.
- Theorem of Bonnet-Myers: $\operatorname{Ric}(M^n) > 0 \Rightarrow |\pi_1(M)| < \infty$.
- ► Gromov's Betti number Theorem: $\sec(M^n) \ge 0 \Rightarrow \sum_i b_i(M) < C(n)$.

There are no invariants which can distinguish positively and non-negatively curved simply connected manifolds.

- There are no invariants which can distinguish positively and non-negatively curved simply connected manifolds.
- But there are the following conjectures:

- There are no invariants which can distinguish positively and non-negatively curved simply connected manifolds.
- But there are the following conjectures:

Hopf's Conjecture I

If M is a closed, even-dimensional positively curved manifold, then the Euler characteristic of M is positive.

- There are no invariants which can distinguish positively and non-negatively curved simply connected manifolds.
- But there are the following conjectures:

Hopf's Conjecture I

If M is a closed, even-dimensional positively curved manifold, then the Euler characteristic of M is positive.

Hopf's Conjecture II

 $S^2 \times S^2$ does not admit a positively curved metric.

Remarks.

The first conjecture would imply that $S^{2n+1} \times S^{2n'+1}$ does not admit a positively curved metric.

Remarks.

- The first conjecture would imply that $S^{2n+1} \times S^{2n'+1}$ does not admit a positively curved metric.
- The first conjecture is true in dimensions two and four.

Grove's Programme

Classify simply connected positively curved manifolds with large isometry group first.

The result of Grove and Searle.

Theorem (Grove and Searle 1992)

Let M^n be positively curved and simply connected. Assume that there is an isometric, effective action of a torus T^d with

$$d \ge [\frac{n+1}{2}].$$

Then *M* is diffeomorphic to S^n or $\mathbb{C}P^{\frac{n}{2}}$.

Wilking's Theorem.

Theorem (Wilking 2003)

Let M^n be manifold with $\pi_1(M) = 0$, $\sec(M) > 0$, and $n \ge 10$. Suppose that there is an effective isometric action of a d-dimensional torus T^d on M^n with

$$d \ge \frac{1}{4}n + 1.$$

Then M^n is homeomorphic to $\mathbb{H}P^{\frac{n}{4}}$ or to S^n , or M is homotopy equivalent to $\mathbb{C}P^{\frac{n}{2}}$.

Main tool in the proof.

Connectedness Lemma (Wilking 2003)

Assume sec(M^n) > 0. If $N^{n-k} \subset M^n$ is a totally geodesic submanifold, then the inclusion $N^{n-k} \to M^n$ is (n - 2k + 1)-connected.

Further results until 2010.

Kleiner (1990) and independently Searle and Yang (1994) classify simply connected positively curved 4-manifolds with S¹-symmetry.

Further results until 2010.

- Kleiner (1990) and independently Searle and Yang (1994) classify simply connected positively curved 4-manifolds with S¹-symmetry.
- Fang and Rong (2005) gave a homeomorphism classification of positively curved *n*-manifolds with symmetry rank $\left[\frac{n-1}{2}\right]$.

Further results until 2010.

- Kleiner (1990) and independently Searle and Yang (1994) classify simply connected positively curved 4-manifolds with S¹-symmetry.
- Fang and Rong (2005) gave a homeomorphism classification of positively curved *n*-manifolds with symmetry rank $\left[\frac{n-1}{2}\right]$.
- Dessai (2007) gives vanishing results for coefficients of the elliptic genus of a positively curved two-connected manifold with isometric S¹-action.

Kennard's result.

Theorem (Kennard 2013)

Assume $sec(M^n) > 0$. If $n \equiv 0 \mod 4$ and M admits an effective, isometric T^d -action with

 $d\geq 2log_2n-2,$

then x(M) > 0.

Main tool in proof.

Periodicity Theorem (Kennard 2012)

Let M^n with $sec(M^n) > 0$, $\pi_1(M) = 0$.

Assume there is a pair of totally geodesic, transversely intersecting submanifolds of codimensions $k_1 \ge k_2$. If $k_1 + 3k_2 \le n$, then $H^*(M; \mathbb{Q})$ is 4-periodic.

Main tool in proof.

Periodicity Theorem (Kennard 2012)

Let M^n with $\sec(M^n) > 0$, $\pi_1(M) = 0$. Assume there is a pair of totally geodesic, transversely intersecting submanifolds of codimensions $k_1 \ge k_2$. If $k_1 + 3k_2 \le n$, then $H^*(M; \mathbb{Q})$ is 4-periodic.

Definition

Here $H^*(M)$ is called *k*-periodic, if there is a $e \in H^k(M)$ such that

is an isomorphism for all $0 \le i \le \dim M - k$ or $H^*(M) \cong H^*(S^{\dim M})$.

Remarks

▶ If $H^*(M; \mathbb{Q})$ is four-periodic and $b_1(M) = b_3(M) = 0$, then $H^*(M; \mathbb{Q})$ is one of the following: $H^*(S^n; \mathbb{Q}), H^*(\mathbb{C}P^{\frac{n}{2}}; \mathbb{Q}), H^*(\mathbb{H}P^{\frac{n}{4}}; \mathbb{Q})$, or $H^*(S^2 \times \mathbb{H}P^{\frac{n-2}{4}}; \mathbb{Q})$.

Remarks

If H*(M; Q) is four-periodic and b₁(M) = b₃(M) = 0, then H*(M; Q) is one of the following: H*(Sⁿ; Q), H*(CP^{n/2}; Q), H*(HP^{n/4}; Q), or H*(S² × HP^{n-2/4}; Q).
If H*(M; Q) is four-periodic, b₁(M) = 0 and n ≡ 0 mod 4, then b₃(M) = 0.

Further results since 2013.

Amann and Kennard (2014/2015/2017) further improved the bound in Kennard's original result.

Further results since 2013.

- Amann and Kennard (2014/2015/2017) further improved the bound in Kennard's original result.
- Weisskopf (2017) combined Kennard's result with the methods of Dessai.

Further results since 2013.

- Amann and Kennard (2014/2015/2017) further improved the bound in Kennard's original result.
- Weisskopf (2017) combined Kennard's result with the methods of Dessai.
- Goertsches and W. (2015) studied positively curved GKM-manifolds.

First main result.

Theorem (Kennard, W., Wilking 2019)

Assume $sec(M^n) > 0$ and that there is an isometric effective action of a torus T^d of dimension

$d \geq 5.$

Then every component F of M^T has the rational cohomology of S^m , $\mathbb{C}P^m$ or $\mathbb{H}P^m$.

First main result.

Theorem (Kennard, W., Wilking 2019)

Assume $sec(M^n) > 0$ and that there is an isometric effective action of a torus T^d of dimension

 $d \geq 5.$

Then every component F of M^T has the rational cohomology of S^m , $\mathbb{C}P^m$ or $\mathbb{H}P^m$.

This is first result in this direction where the dimension of the acting torus does not grow with the dimension of the manifold.

Some corollaries.

Corollary

Hopf's Conjecture I holds for manifolds with isometric T⁵-actions.

Some corollaries.

Corollary

Hopf's Conjecture I holds for manifolds with isometric T⁵-actions.

Corollary

The isometry group of a potential positively curved metric on $S^{2n+1} \times S^{2n'+1}$ has rank at most four.

New tool in proof.

T-Splitting Theorem

If $T^{2d+1} \rightarrow SO(V)$ is a faithful representation,

New tool in proof.

T-Splitting Theorem

If $T^{2d+1} \rightarrow SO(V)$ is a faithful representation, then there exists a d-dimensional subgroup $H \subset T^{2d+1}$ such that the induced representation $T^{2d+1}/H \rightarrow SO(V^H)$ is faithful and has exactly d + 1 non-trivial, pairwise inequivalent, irreducible subrepresentations.

New tool in proof.

T-Splitting Theorem

If $T^{2d+1} \rightarrow SO(V)$ is a faithful representation, then there exists a d-dimensional subgroup $H \subset T^{2d+1}$ such that the induced representation $T^{2d+1}/H \rightarrow SO(V^H)$ is faithful and has exactly d + 1 non-trivial, pairwise inequivalent, irreducible subrepresentations. In particular, there exist d + 1 circles in T^{2d+1}/H whose fixed point sets in V^H intersect pairwise transversely.

Localization in equivariant cohomology, leads to relations between $H^*(M)$ and $H^*(M^T)$.

- Localization in equivariant cohomology, leads to relations between $H^*(M)$ and $H^*(M^T)$.
- Therefore it suffices to find for each component $F \subset M^T$, an invariant submanifold $F \subset P \subset M$ with controlled cohomology ring.

- Localization in equivariant cohomology, leads to relations between $H^*(M)$ and $H^*(M^T)$.
- Therefore it suffices to find for each component $F \subset M^T$, an invariant submanifold $F \subset P \subset M$ with controlled cohomology ring.
- To find *P* do the following:
 - For simplicity assume $d \ge 7$.

- Localization in equivariant cohomology, leads to relations between $H^*(M)$ and $H^*(M^T)$.
- Therefore it suffices to find for each component $F \subset M^T$, an invariant submanifold $F \subset P \subset M$ with controlled cohomology ring.
- To find P do the following:
 - For simplicity assume $d \ge 7$.
 - Let *P* be a component of M^H , where *H* is as in the *T*-Splitting Theorem (with $V = T_x M$ for $x \in F$).

- Localization in equivariant cohomology, leads to relations between $H^*(M)$ and $H^*(M^T)$.
- Therefore it suffices to find for each component $F \subset M^T$, an invariant submanifold $F \subset P \subset M$ with controlled cohomology ring.
- To find P do the following:
 - For simplicity assume $d \ge 7$.
 - Let *P* be a component of M^H , where *H* is as in the *T*-Splitting Theorem (with $V = T_x M$ for $x \in F$).
 - Then there are four totally geodesic submanifolds of P intersecting pairwise transversely.

- Localization in equivariant cohomology, leads to relations between $H^*(M)$ and $H^*(M^T)$.
- Therefore it suffices to find for each component $F \subset M^T$, an invariant submanifold $F \subset P \subset M$ with controlled cohomology ring.
- To find P do the following:
 - For simplicity assume $d \ge 7$.
 - Let *P* be a component of M^H , where *H* is as in the *T*-Splitting Theorem (with $V = T_x M$ for $x \in F$).
 - Then there are four totally geodesic submanifolds of P intersecting pairwise transversely.
 - Applying the Periodicity Theorem to the two submanifolds of smallest codimension, implies that P has four-periodic cohomology.

Computations in equivariant cohomology then show $b_3(P) = 0$

Computations in equivariant cohomology then show b₃(P) = 0
 Therefore by classical results one only has to deal with the case that H*(P; Q) = H*(S² × HPⁿ; Q).

- Computations in equivariant cohomology then show $b_3(P) = 0$
- Therefore by classical results one only has to deal with the case that $H^*(P; \mathbb{Q}) = H^*(S^2 \times \mathbb{H}P^n; \mathbb{Q})$.
- In this case computations in equivariant cohomology and the connectedness lemma lead to the desired result.

Second main result.

Theorem (Kennard, W., Wilking 2019)

Assume $sec(M^n) > 0$, $\pi_1(M) = 0$. If M admits an isometric effective equivariantly formal action of T^d , with

 $d \ge 8,$

then *M* has the rational cohomology of S^n , $\mathbb{C}P^{\frac{n}{2}}$, or $\mathbb{H}P^{\frac{n}{4}}$.

Second main result.

Theorem (Kennard, W., Wilking 2019)

Assume $sec(M^n) > 0$, $\pi_1(M) = 0$. If M admits an isometric effective equivariantly formal action of T^d , with

 $d \ge 8,$

then *M* has the rational cohomology of S^n , $\mathbb{C}P^{\frac{n}{2}}$, or $\mathbb{H}P^{\frac{n}{4}}$.

- Bott's Conjecture asks whether a positively curved manifold is rationally elliptic.
- Together with Hopf's Conjecture it would imply that $H^{\text{odd}}(M; \mathbb{Q}) = 0$ in even-dimensions. This in turn implies equivariant formality.

A corollary.

Corollary

The isometry group of a potential positively curved metric on $S^{2n} \times S^{2n'}$ and $S^{2n} \times S^{2n'-1}$, $n' \le n$ has rank at most seven.

A corollary.

Corollary

The isometry group of a potential positively curved metric on $S^{2n} \times S^{2n'}$ and $S^{2n} \times S^{2n'-1}$, $n' \le n$ has rank at most seven.

For the proof note that all torus actions on these manifolds are equivariantly formal.

A corollary.

Corollary

The isometry group of a potential positively curved metric on $S^{2n} \times S^{2n'}$ and $S^{2n} \times S^{2n'-1}$, $n' \le n$ has rank at most seven.

- For the proof note that all torus actions on these manifolds are equivariantly formal.
- There exist equivariantly non-formal actions on $S^2 \times S^3$.

Equivariant formality, implies that

 $H^*(M; \mathbb{Q}) \cong H^*_{T}(M; \mathbb{Q})/(H^{0}(BT)),$

Equivariant formality, implies that

 $H^*(M;\mathbb{Q}) \cong H^*_T(M;\mathbb{Q})/(H^{\mathsf{r0}}(BT)),$

and that

$$\iota^*: H^*_T(M; \mathbb{Q}) \to H^*_T(M^T; \mathbb{Q})$$

is injective.

Equivariant formality, implies that

 $H^*(M;\mathbb{Q}) \cong H^*_T(M;\mathbb{Q})/(H^{\flat 0}(BT)),$

and that

$$\iota^*: H^*_T(M; \mathbb{Q}) \to H^*_T(M^T; \mathbb{Q})$$

is injective.

Hence it suffices to determine the image of *i**.

Let
$$M_1 = \{x \in M; \text{ dim } Tx \le 1\} = \bigcup_{T^{d-1} \subset T^d} M^{T^{d-1}}$$
.

Outline of proof II.

• Let
$$M_1 = \{x \in M; \text{ dim } Tx \le 1\} = \bigcup_{T^{d-1} \subset T^d} M^{T^{d-1}}$$
.

Lemma (Chang, Skjelbred 1974)

Assume that the T-action on M is equivariantly formal. Then for every closed invariant subspace $M_1 \subset X \subset M$,

$$\iota^* H^*_T(X; \mathbb{Q}) = \iota^* H^*_T(M; \mathbb{Q}) \subset H^*_T(M^T; \mathbb{Q}).$$

Outline of proof II.

• Let
$$M_1 = \{x \in M; \text{ dim } Tx \le 1\} = \bigcup_{T^{d-1} \subset T^d} M^{T^{d-1}}$$
.

Lemma (Chang, Skjelbred 1974)

Assume that the T-action on M is equivariantly formal. Then for every closed invariant subspace $M_1 \subset X \subset M$,

$$\iota^*H^*_T(X;\mathbb{Q}) = \iota^*H^*_T(M;\mathbb{Q}) \subset H^*_T(M^T;\mathbb{Q}).$$

> Hence, it suffices to determine the combinatorial structure of M_1 .

In even dimensions *n*, we now have to consider two cases:

▶
$$\exists T^7 \subset T^8$$
 and $F_0 \subset M^{T^7}$, dim $F_0 \ge 4$.

The T⁸-action is GKM. (This case is similar to the discussion in Goertsches-W. 2015)

In the first case. Then:

Using work of Smith, Bredon, Hsiang-Su,

$$M_1 \subset \bigcup_{T^5 \subset T^7} N_{T^5} =: X,$$

In the first case. Then:

Using work of Smith, Bredon, Hsiang-Su,

$$M_1 \subset \bigcup_{T^5 \subset T^7} N_{T^5} =: X,$$

where N_{T^5} denotes the fixed point component of $T^5 \subset T^7$ containing F_0

Using a Mayer-Vietoris argument, we show that

$$\iota^* H^*_{T^7}(X; \mathbb{Q}) \subset H^*(M^{T^7}; \mathbb{Q})$$

is isomorphic to a similar algebra constructed for a linear action on some S^n , $\mathbb{H}P^n$, or $\mathbb{C}P^n$, respectively.

In the first case. Then:

Using work of Smith, Bredon, Hsiang-Su,

$$M_1 \subset \bigcup_{T^5 \subset T^7} N_{T^5} =: X,$$

where N_{T^5} denotes the fixed point component of $T^5 \subset T^7$ containing F_0

Using a Mayer-Vietoris argument, we show that

$$\iota^* H^*_{\mathcal{T}^7}(X; \mathbb{Q}) \subset H^*(M^{\mathcal{T}^7}; \mathbb{Q})$$

is isomorphic to a similar algebra constructed for a linear action on some S^n , $\mathbb{H}P^n$, or $\mathbb{C}P^n$, respectively.

The Chang–Skjelbred Lemma now implies the claim.

Thank you!

Michael Wiemeler (joint with Lee Kennard and Burkhard Wilking)