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Lefschetz number of the Reeb flow

X = Cn \ {0}
Consider a S1-action ρ on X given by

q · (z1, . . . , zn) = (qz1, . . . , qzn) (q ∈ S1).

Problem

Compute the holomorphic Lefschetz number of q ∈ S1:

L(q,X) =
n∑
i=0

(−1)i Trace(q∗ : H0,i(X)→ H0,i(X)).

It is well known that

H0,i(X) =

{
O(X) i = 0,

0 i > 0.
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Lefschetz number of the Reeb flow

Consider ⊕kOk(X) in the place of O(X), where

Ok(X) = {h ∈ O(X) | h(qx) = qkh(x)}.

Since dimOk(X) = (n+k−1)!
(n−1)!k!

, we get

L(q,X) =
∞∑
k=0

qk dimOk(X) =

∞∑
k=0

qk
(n+ k − 1)!

(n− 1)!k!
=
( 1

(n− 1)!

∞∑
k=0

qn+k−1
)(n−1)

.

L(q,X) may not be well-defined on S1.
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Introduction

(M, g) : a (connected compact) Riemannian manifold

η : a contact 1-form on M

Proposition

(M, g, η) is a Sasakian manifold iff its metric cone
(M × R>0, r

2g + dr ⊗ dr, d(r2η)) is a Kähler manifold.
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Introduction

Example

S2n−1 whose cone is S2n−1 × R+
∼= Cn \ {0}

positive S1-bundle over Kähler manifolds
whose cone is the associated C×-bundle

the links of certain isolated singularities of complex varieties

contact toric manifolds of Reeb type
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Introduction

Sasaki-Einstein manifolds have been studied with motivation in

the AdS5/CFT4 correspondence and

construction of Einstein metrics.

Some conjectures by physicists remain open.

c.f. D. Martelli, J. Sparks and S.-T. Yau,

Sasaki-Einstein manifolds and volume minimisation,

Comm. Math. Phys. 280 (2008), no. 3, 611–673.
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Conjectures

Theorem (Martelli-Sparks-Yau)

For a closed Sasaki-Einstein manifold M2n−1, the volume is an algebraic
integer.

Conjecture (Martelli-Sparks-Yau)

The degree of the volume of a closed SE manifold M2n−1 is equal to
(n− 1)rankM−1.

Conjecture (Akishi Kato)

S : the set of isometric classes of toric SE 5-mfds with hol trivial κX .
The volume map S → R;M 7→ vol(M) is injective.
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Introduction

(M2n−1, g, η) : a closed Sasakian manifold

ξ : the Reeb vector field of η defined by ιξdη = 0 and η(ξ) = 1.

The flow generated by ξ is called the Reeb flow of η.

Lemma

The closure T of the Reeb flow in Isom(M, g) is a torus.

Consider the toric case: dimT = n.
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Introduction

Now the momentum polytope ∆ of such a Sasakian manifold is the
image of the contact moment map:

Ψ : M −→ Lie(T )∗

x 7−→ (X 7→ η(X#)(x)),

where X# is the fundamental vector field of X ∈ Lie(T ).
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Introduction

S2n−1 ⊂ R2n : the unit sphere

ηstd =
∑n

i=1(yidxi − xidyi) : the standard contact form on S2n−1

b = (b1, . . . , bn) ∈ (R>0)n

Consider
ηb =

ηstd∑n
i=1 bi(x

2
i + y2

i )
∈ Ω1(S2n+1).

Here S2n−1 admits a Sasakian structure (ηb, gb), where the
metric gb is determined by ηb and the standard CR structure on S2n−1.

The Reeb vector field ξb of ηb is

ξb =
n∑
i=1

bi

(
yi

∂

∂xi
− xi

∂

∂yi

)
.
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Martelli-Sparks-Yau’s theorems

M2n+1 : a closed manifold,
S : the space of Sasakian metrics on M .

Vol : S −→ R
g 7−→ Vol(M, g)

It is easy to see that Vol(M, g) = 1
2nn!

∫
M
η ∧ (dη)n.

Proposition (Martelli-Sparks-Yau)

For Sasakian manifolds whose cone admits holomorphically trivial
canonical line bundle, Vol is equal to the Einstein-Hilbert action up to
a constant on S.

In particular, Sasaki-Einstein metrics are critical points of Vol.
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Martelli-Sparks-Yau’s theorems

q ∈ T ⊂Aut(M, g, η)

X = M × R+ : the cone of M

The holomorphic Lefschetz number L(q) should be defined by

L(q) =
n∑
i=0

(−1)i trace
(
q : H0,i(X)→ H0,i(X)

)
,

Since

H0,i(X) ∼=

{
O(X) i = 0,

{0} i > 0.

Hence
L(q) = trace

(
q : O(X)→ O(X)

)
.
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Martelli-Sparks-Yau’s theorems

Assume the well-definedness of L(q) to have a function L on T .

This L should have a pole at 1 ∈ T by

L(1) = dimO(X) =∞.

Theorem (Martelli-Sparks-Yau)

Take b ∈ Lie(T ) so that b# = ξ. Then we have

Vol(M) =
2πn

(n− 1)!
lim
t→0

tn L(exp(−tb)),
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Main result

Theorem

(M2n−1, g, η) : a closed Sasakian manifold (n > 1),

X = M × R>0

Assume that

1 an n-dim torus T ⊂ Aut(M, g, η) contains the Reeb flow, and
2 κX is holomorphically trivial.

Let TC be the complexification of T , which acts on X.

Then L(q) is a well-defined holomorphic fcn on { q ∈ TC | |q| � 1 }.
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Main result

Definition

H : a separable Hilbert space, ϕ : H → H bounded

ϕ is of trace class if the series∑
i

〈(ϕ∗ϕ)1/2ei, ei〉

absolutely converges for some orthonormal basis {ei} of H.

We will complete O(X) as a Hilbert space.

Remark

If X = C2 \ {0}, for q ∈ C× with |q| > 1, for any completion H of
O(X), the extention of q∗ to H → H is not bounded, because the
set of the eigenvalues of q∗ is not bounded.
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Main result

Take a principal T -orbit Σ in X.
M(Σ,C) : the space of Lebesgue measurable fcns on Σ
The restriction map ρ : O(X) −→M(Σ,C) is injective.
Consider an inner product 〈·, ·〉 on M(Σ,C) given by

〈f, g〉 =

∫
Σ
fgd volΣ, f, g ∈M(Σ,C).

Take the completion with this inner product

H = ρ(O(X)).

Let S = C∗ ∩ (tZ)∗, where C∗ is the moment polytope of M × R+

O(X) consists of convergent power series of polynomials zm for m ∈ S.

H has an orthonormal basis { 1
‖zm‖z

m}m∈S .
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For q ∈ TC, extend q : O(X)→ O(X) to q : H → H by the linearity.

Proposition

Let q ∈ TC. If |q| � 1, then q : H → H is bounded and of trace class.

Proof.

Let C∗std = (R≥0)n. We can assume that C∗ ⊂ C∗std. It is easy to see that
q∗ = q. Let q̂ = (|q1|, . . . , |qn|). Then we have∑

m∈S

〈
(q∗q)1/2 1

‖zm‖
zm,

1

‖zm‖
zm
〉

=
∑
m∈S

q̂m.

Since C∗ ⊂ C∗std, we have
∑

m∈S q̂
m ≤

∑
m∈(Z≥0)n q̂

m. By assumption, we
have ∑

m∈(Z≥0)n

q̂m =

n∏
i=1

1

1− |qi|
.
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Consider a function F : Lie(TC)→ C ∪ {∞} defined by

F (b) =
2πn

(n− 1)!

∫
C∗
e−(b,y)dy1 · · · dyn,

where a coordinate (y1, . . . , yn) on t∗ associated with the fixed
integral basis. Here (·, ·) is the canonical pairing between t and t∗.

Theorem (Martelli-Sparks-Yau)

For each b in C, we have

F (b) = Vol(M, gb),

where gb is the Sasakian metric obtained by deformation of type I
whose Reeb vector field is equal to b#.
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Let ω = d(r2η)
2 be the symplectic form on X. By Stokes theorem, we have

vol(M) =
1

2n−1

∫
M
η ∧ (dη)n−1

(n− 1)!
= 2n

∫
X≤1

ωn

n!
,

where X≤1 = ∪0<r≤1M × {r}. By integrating along the fibers of

r : X → R and using
∫∞

0 r2n−1e−r
2/2dr = 2n−1(n− 1)!, we have

2nn!

∫
X≤1

ωn =

∫
X
e−r

2/2ωn.

Then it follows that

vol(M) =
1

2n−1(n− 1)!

∫
X
e−r

2/2ω
n

n!
.
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(φ1, . . . , φn) : t→ Rn/2πZn : the coordinate on t correspond to an
integral basis of tZ.
(y1, . . . , yn) : the coordinate on t∗ which corresponds to the dual basis.
Since we have ω =

∑n
i=1 dyi ∧ dφi on Ψ−1

(
int(C∗)

)
, by integrating along

the torus fibers of Ψ, we get

1

2n−1(n− 1)!

∫
X
e−r

2/2ω
n

n!

=
1

2n−1(n− 1)!

∫
X
e−r

2/2|dφ1 · · · dφndy1 · · · dyn|

=
2πn

(n− 1)!

∫
C∗
e−r

2/2dy1 · · · dyn.

Here r2/2 is the Hamiltonian function of ξ, namely, −
(
b,Ψ(p)

)
= r2/2.

Thus, we have

vol(M) =
2πn

(n− 1)!

∫
C∗
e−(b,y)dy1 · · · dyn = F (b).
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Corollary

We have

F (b) =
2πn

(n− 1)!
lim
t→0

tnL(e−bt)

for b in a domain { b ∈ Lie(TC) | Im b� 0 }.

For q ∈ TC, we have

L(q) =
∑
m∈S

qm.

Thus,
L(e−bt) =

∑
m∈S

e−(b,m)t.

For b with Im� 0, the right hand side is well defined. By the definition of
Riemann integral, we have

lim
t→0

tnL(e−bt) = lim
t→0

tn
∑
m∈S

e−(b,m)t =

∫
C∗
e−(b,y)dy1 · · · dyn = F (b).
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Corollary

(M2n−1, g, η) : a closed Sasakian manifold (n > 1),

X = M × R>0

Assume that

an n-dim torus T ⊂ Aut(M, g, η) contains the Reeb flow, and

κX is holomorphically trivial.

1

2πn

(n− 1)!
lim
t→0

tnL(e−bt) =
2πn

(n− 1)!

∫
C∗
e−(b,y)dy1 · · · dyn

for b ∈ Lie(TC) with Im b� 0.

2

Vol(M, gb) =
2πn

(n− 1)!

∫
C∗
e−(b,y)dy1 · · · dyn,

where gb is the Sasakian metric obtained by deformation of type I
whose Reeb vector field is equal to b#.
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Example

Consider a cone C∗ = { y ∈ R3 | (vi, y) ≥ 0 }, where v1, v2, v3 ∈ R3

are given by

v1 =

1
0
0

 , v2 =

1
1
1

 , v3 =

1
2
4

 .

Here C∗ is the moment polytope of the cone of a 5-dimensional toric
Sasakian manifold M (Cho-Futaki-Ono’s characterization).
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Example

The vectors tangent to 1-dimensional faces of C∗ are

w1 =

 2
−3
1

 , w2 =

 0
4
−2

 , w3 =

 0
−1
1

 .

Here note that we have

(x,wi) = det(x, vj , vk), ∀x ∈ R3,

where (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2).
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Example

We will compute the characteristic function σC∗ of C∗ defined by

σC∗(y) =
∑
m∈S

ym,

where S = C∗ ∩ Z3, with the technique of Beck-Haase-Sottile. Then,
the Martelli-Sparks-Yau formula gives the volume of M .
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Example

Consider the parallelepiped P spanned by w1, w2, w3, i.e.,

P = { y ∈ R3 | y = c1w1 + c2w2 + c3w3, 0 ≤ ∃ci < 1 (i = 1, 2, 3) }.

Since C∗ is tiled with translates of P by a semigroup

Z≥0w1 ⊕ Z≥0w2 ⊕ Z≥0w3,

for y ∈ C3 with sufficiently small absolute value, we have

σC∗(y) =
σP(y)

(1− yw1)(1− yw2)(1− yw3)
.
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Example

Let u1 = (1,−2, 1)T and u2 = w2/2. It is easy to see that the integer
points contained in P is 0, u1, u2 and u1 + u2. Then we have

σP(y) = 1 + yu1 + yu2 + yu1+u2

and hence

σC∗(y) =
1 + yu1 + yu2 + yu1+u2

(1− yw1)(1− yw2)(1− yw3)
.
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Example

Let L(q) be the holomorphic Lefschetz number of q ∈ (C×)3. Since
L(q) = σC∗(q) as we saw in the last section, take
b = (b1, b2, b3)T ∈ C3 and substitute y = e−bt = (e−b1t, e−b2t, e−b3t)T

to the last equation to have

L(e−bt) =
1 + e−(b,u1)t + e−(b,u2)t + e−(b,u1+u2)t

(1− e−(b,w1)t)(1− e−(b,w2)t)(1− e−(b,w3)t)
.

Thus we have

lim
t→0

t3L(e−bt) =
4

(b, w1)(b, w2)(b, w3)
.

By the formula of Martelli-Sparks-Yau, we have

vol(M) =
4π3

(b, w1)(b, w2)(b, w3)
.
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Example

The volume of toric Sasakian manifolds M can be computed in four
other ways:

Vol(M) = C Vol(∆) by Martelli-Sparks-Yau. Then Lawrence’s
formula of the volume of polytope can be used.

MSY’s localization formula of the volume of M on an equivariant
resolution of the singularity at the origin of M × R+.

the localization formula of basic cohomology of Killing foliations
by Töben, Goertsches-Nozawa-Töben or

the localization formula for K-contact manifolds due to
Casselmann-Fisher.
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Example

Theorem (Goertsches-N.-Töben)

Let C∗ be the momentum polytope C∗ of X. For each 1-dim T -orbit
L, let vL1 , . . . , v

L
n−1 be normal vectors of C∗ such that Φ(L)(vLi ) = 0.

Assume that the vectors vL1 , . . . , v
L
n−1 are ordered so that

det(b, vL1 , . . . , v
L
n−1) > 0. Then we have

vol(M) =
2πn

(n− 1)!

∑
L

1

det(b, vL1 , . . . , v
L
n−1)
·

det(v, vL1 , . . . , v
L
n−1)n−1∏n−1

i=1 det(b, vL1 , . . . , v
L
i−1, v, v

L
i+1, · · · , vLn−1)

,

where the right hand side is independent of v ∈ t.
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Thank you for your attention !
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