On holomorphic Lefschetz number of the Reeb flow of toric Sasakian manifolds

Hiraku Nozawa

Ritsumeikan University

21 November 2019
Toric Topology in Okayama
Okayama University of Science

Lefschetz number of the Reeb flow

$X=\mathbb{C}^{n} \backslash\{0\}$
Consider a S^{1}-action ρ on X given by

$$
q \cdot\left(z_{1}, \ldots, z_{n}\right)=\left(q z_{1}, \ldots, q z_{n}\right) \quad\left(q \in S^{1}\right) .
$$

Problem

Compute the holomorphic Lefschetz number of $q \in S^{1}$:

$$
L(q, X)=\sum_{i=0}^{n}(-1)^{i} \operatorname{Trace}\left(q^{*}: H^{0, i}(X) \rightarrow H^{0, i}(X)\right)
$$

It is well known that

$$
H^{0, i}(X)= \begin{cases}\mathcal{O}(X) & i=0 \\ 0 & i>0\end{cases}
$$

Lefschetz number of the Reeb flow

Consider $\oplus_{k} \mathcal{O}_{k}(X)$ in the place of $\mathcal{O}(X)$, where

$$
\mathcal{O}_{k}(X)=\left\{h \in \mathcal{O}(X) \mid h(q x)=q^{k} h(x)\right\} .
$$

Since $\operatorname{dim} \mathcal{O}_{k}(X)=\frac{(n+k-1)!}{(n-1)!k!}$, we get

$$
\begin{aligned}
L(q, X)= & \sum_{k=0}^{\infty} q^{k} \operatorname{dim} \mathcal{O}_{k}(X)= \\
& \sum_{k=0}^{\infty} q^{k} \frac{(n+k-1)!}{(n-1)!k!}=\left(\frac{1}{(n-1)!} \sum_{k=0}^{\infty} q^{n+k-1}\right)^{(n-1)} .
\end{aligned}
$$

$L(q, X)$ may not be well-defined on S^{1}.

Introduction

(M, g) : a (connected compact) Riemannian manifold η : a contact 1-form on M

Proposition

(M, g, η) is a Sasakian manifold iff its metric cone $\left(M \times \mathbb{R}_{>0}, r^{2} g+d r \otimes d r, d\left(r^{2} \eta\right)\right)$ is a Kähler manifold.

Introduction

Example

- $S^{2 n-1}$ whose cone is $S^{2 n-1} \times \mathbb{R}_{+} \cong \mathbb{C}^{n} \backslash\{0\}$
- positive S^{1}-bundle over Kähler manifolds whose cone is the associated \mathbb{C}^{\times}-bundle
- the links of certain isolated singularities of complex varieties
- contact toric manifolds of Reeb type

Introduction

Sasaki-Einstein manifolds have been studied with motivation in

- the $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ correspondence and
- construction of Einstein metrics.

Some conjectures by physicists remain open.
c.f. D. Martelli, J. Sparks and S.-T. Yau, Sasaki-Einstein manifolds and volume minimisation, Comm. Math. Phys. 280 (2008), no. 3, 611-673.

Conjectures

Theorem (Martelli-Sparks-Yau)

For a closed Sasaki-Einstein manifold $M^{2 n-1}$, the volume is an algebraic integer.

Conjecture (Martelli-Sparks-Yau)

The degree of the volume of a closed SE manifold $M^{2 n-1}$ is equal to $(n-1)^{\mathrm{rank} M-1}$.

Conjecture (Akishi Kato)

\mathcal{S} : the set of isometric classes of toric SE 5 -mfds with hol trivial κ_{X}. The volume map $\mathcal{S} \rightarrow \mathbb{R} ; M \mapsto \operatorname{vol}(M)$ is injective.

Introduction

$\left(M^{2 n-1}, g, \eta\right)$: a closed Sasakian manifold
ξ : the Reeb vector field of η defined by $\iota_{\xi} d \eta=0$ and $\eta(\xi)=1$.

The flow generated by ξ is called the Reeb flow of η.
Lemma
The closure T of the Reeb flow in $\operatorname{Isom}(M, g)$ is a torus.
Consider the toric case: $\operatorname{dim} T=n$.

Introduction

Now the momentum polytope Δ of such a Sasakian manifold is the image of the contact moment map:

$$
\begin{array}{rlc}
\Psi: M & \longrightarrow & \operatorname{Lie}(T)^{*} \\
x & \longmapsto\left(X \mapsto \eta\left(X_{\#}\right)(x)\right),
\end{array}
$$

where $X_{\#}$ is the fundamental vector field of $X \in \operatorname{Lie}(T)$.

Introduction

$S^{2 n-1} \subset \mathbb{R}^{2 n}:$ the unit sphere
$\eta_{\text {std }}=\sum_{i=1}^{n}\left(y_{i} d x_{i}-x_{i} d y_{i}\right):$ the standard contact form on $S^{2 n-1}$
$b=\left(b_{1}, \ldots, b_{n}\right) \in\left(\mathbb{R}_{>0}\right)^{n}$
Consider

$$
\eta_{b}=\frac{\eta_{\mathrm{std}}}{\sum_{i=1}^{n} b_{i}\left(x_{i}^{2}+y_{i}^{2}\right)} \in \Omega^{1}\left(S^{2 n+1}\right)
$$

Here $S^{2 n-1}$ admits a Sasakian structure $\left(\eta_{b}, g_{b}\right)$, where the metric g_{b} is determined by η_{b} and the standard CR structure on $S^{2 n-1}$.

The Reeb vector field ξ_{b} of η_{b} is

$$
\xi_{b}=\sum_{i=1}^{n} b_{i}\left(y_{i} \frac{\partial}{\partial x_{i}}-x_{i} \frac{\partial}{\partial y_{i}}\right)
$$

Martelli-Sparks-Yau's theorems

$M^{2 n+1}$: a closed manifold,
\mathcal{S} : the space of Sasakian metrics on M.

$$
\begin{array}{rlc}
\text { Vol : } \mathcal{S} & \longrightarrow & \mathbb{R} \\
g & \longmapsto & \operatorname{Vol}(M, g)
\end{array}
$$

It is easy to see that $\operatorname{Vol}(M, g)=\frac{1}{2^{n} n!} \int_{M} \eta \wedge(d \eta)^{n}$.

Proposition (Martelli-Sparks-Yau)

For Sasakian manifolds whose cone admits holomorphically trivial canonical line bundle, Vol is equal to the Einstein-Hilbert action up to a constant on \mathcal{S}.
In particular, Sasaki-Einstein metrics are critical points of Vol.

Martelli-Sparks-Yau's theorems

$q \in T \subset \operatorname{Aut}(M, g, \eta)$
$X=M \times \mathbb{R}_{+}$: the cone of M
The holomorphic Lefschetz number $L(q)$ should be defined by

$$
L(q)=\sum_{i=0}^{n}(-1)^{i} \operatorname{trace}\left(q: H^{0, i}(X) \rightarrow H^{0, i}(X)\right),
$$

Since

$$
H^{0, i}(X) \cong \begin{cases}\mathcal{O}(X) & i=0 \\ \{0\} & i>0\end{cases}
$$

Hence

$$
L(q)=\operatorname{trace}(q: \mathcal{O}(X) \rightarrow \mathcal{O}(X))
$$

Martelli-Sparks-Yau's theorems

Assume the well-definedness of $L(q)$ to have a function L on T. This L should have a pole at $1 \in T$ by

$$
L(1)=\operatorname{dim} \mathcal{O}(X)=\infty .
$$

Theorem (Martelli-Sparks-Yau)
Take $b \in \operatorname{Lie}(T)$ so that $b_{\#}=\xi$. Then we have

$$
\operatorname{Vol}(M)=\frac{2 \pi^{n}}{(n-1)!} \lim _{t \rightarrow 0} t^{n} L(\exp (-t b)),
$$

Main result

Theorem

$\left(M^{2 n-1}, g, \eta\right)$: a closed Sasakian manifold $(n>1)$,
$X=M \times \mathbb{R}_{>0}$
Assume that
(1) an n-dim torus $T \subset \operatorname{Aut}(M, g, \eta)$ contains the Reeb flow, and
(0) κ_{X} is holomorphically trivial.

Let $T_{\mathbb{C}}$ be the complexification of T, which acts on X.
Then $L(q)$ is a well-defined holomorphic fcn on $\left\{q \in T_{\mathbb{C}}| | q \mid \ll 1\right\}$.

Main result

Definition

\mathcal{H} : a separable Hilbert space, $\varphi: \mathcal{H} \rightarrow \mathcal{H}$ bounded
φ is of trace class if the series

$$
\sum_{i}\left\langle\left(\varphi^{*} \varphi\right)^{1 / 2} e_{i}, e_{i}\right\rangle
$$

absolutely converges for some orthonormal basis $\left\{e_{i}\right\}$ of \mathcal{H}.
We will complete $\mathcal{O}(X)$ as a Hilbert space.

Remark

If $X=\mathbb{C}^{2} \backslash\{0\}$, for $q \in \mathbb{C}^{\times}$with $|q|>1$, for any completion \mathcal{H} of $\mathcal{O}(X)$, the extention of q^{*} to $\mathcal{H} \rightarrow \mathcal{H}$ is not bounded, because the set of the eigenvalues of q^{*} is not bounded.

Main result

Take a principal T-orbit Σ in X.
$\mathcal{M}(\Sigma, \mathbb{C})$: the space of Lebesgue measurable fcns on Σ
The restriction map $\rho: \mathcal{O}(X) \longrightarrow \mathcal{M}(\Sigma, \mathbb{C})$ is injective.
Consider an inner product $\langle\cdot, \cdot\rangle$ on $\mathcal{M}(\Sigma, \mathbb{C})$ given by

$$
\langle f, g\rangle=\int_{\Sigma} f \bar{g} d \operatorname{vol}_{\Sigma}, \quad f, g \in \mathcal{M}(\Sigma, \mathbb{C})
$$

Take the completion with this inner product

$$
\mathcal{H}=\overline{\rho(\mathcal{O}(X))}
$$

Let $\mathcal{S}=\mathcal{C}^{*} \cap\left(\mathfrak{t}_{\mathbb{Z}}\right)^{*}$, where \mathcal{C}^{*} is the moment polytope of $M \times \mathbb{R}_{+}$
$\mathcal{O}(X)$ consists of convergent power series of polynomials z^{m} for $m \in \mathcal{S}$.
\mathcal{H} has an orthonormal basis $\left\{\frac{1}{\left\|z^{m}\right\|} z^{m}\right\}_{m \in \mathcal{S}}$.

For $q \in T_{\mathbb{C}}$, extend $q: \mathcal{O}(X) \rightarrow \mathcal{O}(X)$ to $q: \mathcal{H} \rightarrow \mathcal{H}$ by the linearity.

Proposition

Let $q \in T_{\mathbb{C}}$. If $|q| \ll 1$, then $q: \mathcal{H} \rightarrow \mathcal{H}$ is bounded and of trace class.

Proof.

Let $\mathcal{C}_{\text {std }}^{*}=\left(\mathbb{R}_{\geq 0}\right)^{n}$. We can assume that $\mathcal{C}^{*} \subset \mathcal{C}_{\text {std }}^{*}$. It is easy to see that $q^{*}=\bar{q}$. Let $\hat{q}=\left(\left|q_{1}\right|, \ldots,\left|q_{n}\right|\right)$. Then we have

$$
\sum_{m \in \mathcal{S}}\left\langle\left(q^{*} q\right)^{1 / 2} \frac{1}{\left\|z^{m}\right\|} z^{m}, \frac{1}{\left\|z^{m}\right\|} z^{m}\right\rangle=\sum_{m \in \mathcal{S}} \hat{q}^{m}
$$

Since $\mathcal{C}^{*} \subset \mathcal{C}_{\text {std }}^{*}$, we have $\sum_{m \in \mathcal{S}} \hat{q}^{m} \leq \sum_{m \in\left(\mathbb{Z}_{\geq 0}\right)^{n}} \hat{q}^{m}$. By assumption, we have

$$
\sum_{m \in\left(\mathbb{Z}_{\geq 0}\right)^{n}} \hat{q}^{m}=\prod_{i=1}^{n} \frac{1}{1-\left|q_{i}\right|}
$$

Consider a function $F: \operatorname{Lie}\left(T_{\mathbb{C}}\right) \rightarrow \mathbb{C} \cup\{\infty\}$ defined by

$$
F(b)=\frac{2 \pi^{n}}{(n-1)!} \int_{\mathcal{C}^{*}} e^{-(b, y)} d y_{1} \cdots d y_{n}
$$

where a coordinate $\left(y_{1}, \ldots, y_{n}\right)$ on \mathfrak{t}^{*} associated with the fixed integral basis. Here (\cdot, \cdot) is the canonical pairing between \mathfrak{t} and \mathfrak{t}^{*}.

Theorem (Martelli-Sparks-Yau)

For each b in \mathcal{C}, we have

$$
F(b)=\operatorname{Vol}\left(M, g_{b}\right),
$$

where g_{b} is the Sasakian metric obtained by deformation of type I whose Reeb vector field is equal to $b_{\#}$.

Let $\omega=\frac{d\left(r^{2} \eta\right)}{2}$ be the symplectic form on X. By Stokes theorem, we have

$$
\operatorname{vol}(M)=\frac{1}{2^{n-1}} \int_{M} \eta \wedge \frac{(d \eta)^{n-1}}{(n-1)!}=2 n \int_{X_{\leq 1}} \frac{\omega^{n}}{n!},
$$

where $X_{\leq 1}=\cup_{0<r \leq 1} M \times\{r\}$. By integrating along the fibers of $r: X \rightarrow \mathbb{R}$ and using $\int_{0}^{\infty} r^{2 n-1} e^{-r^{2} / 2} d r=2^{n-1}(n-1)$!, we have

$$
2^{n} n!\int_{X_{\leq 1}} \omega^{n}=\int_{X} e^{-r^{2} / 2} \omega^{n}
$$

Then it follows that

$$
\operatorname{vol}(M)=\frac{1}{2^{n-1}(n-1)!} \int_{X} e^{-r^{2} / 2} \frac{\omega^{n}}{n!} .
$$

$\left(\phi_{1}, \ldots, \phi_{n}\right): \mathfrak{t} \rightarrow \mathbb{R}^{n} / 2 \pi \mathbb{Z}^{n}:$ the coordinate on \mathfrak{t} correspond to an integral basis of $\mathfrak{t}_{\mathbb{Z}}$.
$\left(y_{1}, \ldots, y_{n}\right)$: the coordinate on \mathfrak{t}^{*} which corresponds to the dual basis. Since we have $\omega=\sum_{i=1}^{n} d y_{i} \wedge d \phi_{i}$ on $\Psi^{-1}\left(\operatorname{int}\left(\mathcal{C}^{*}\right)\right)$, by integrating along the torus fibers of Ψ, we get

$$
\begin{aligned}
& \frac{1}{2^{n-1}(n-1)!} \int_{X} e^{-r^{2} / 2} \frac{\omega^{n}}{n!} \\
= & \frac{1}{2^{n-1}(n-1)!} \int_{X} e^{-r^{2} / 2}\left|d \phi_{1} \cdots d \phi_{n} d y_{1} \cdots d y_{n}\right| \\
= & \frac{2 \pi^{n}}{(n-1)!} \int_{\mathcal{C}^{*}} e^{-r^{2} / 2} d y_{1} \cdots d y_{n} .
\end{aligned}
$$

Here $r^{2} / 2$ is the Hamiltonian function of ξ, namely, $-(b, \Psi(p))=r^{2} / 2$. Thus, we have

$$
\operatorname{vol}(M)=\frac{2 \pi^{n}}{(n-1)!} \int_{\mathcal{C}^{*}} e^{-(b, y)} d y_{1} \cdots d y_{n}=F(b)
$$

Corollary

We have

$$
F(b)=\frac{2 \pi^{n}}{(n-1)!} \lim _{t \rightarrow 0} t^{n} L\left(e^{-b t}\right)
$$

for b in a domain $\left\{b \in \operatorname{Lie}\left(T_{\mathbb{C}}\right) \mid \operatorname{Im} b \gg 0\right\}$.
For $q \in T_{\mathbb{C}}$, we have

$$
L(q)=\sum_{m \in \mathcal{S}} q^{m} .
$$

Thus,

$$
L\left(e^{-b t}\right)=\sum_{m \in \mathcal{S}} e^{-(b, m) t}
$$

For b with $\operatorname{Im} \gg 0$, the right hand side is well defined. By the definition of Riemann integral, we have

$$
\lim _{t \rightarrow 0} t^{n} L\left(e^{-b t}\right)=\lim _{t \rightarrow 0} t^{n} \sum_{m \in \mathcal{S}} e^{-(b, m) t}=\int_{\mathcal{C}^{*}} e^{-(b, y)} d y_{1} \cdots d y_{n}=F(b)
$$

Corollary

$\left(M^{2 n-1}, g, \eta\right)$: a closed Sasakian manifold $(n>1)$,
$X=M \times \mathbb{R}_{>0}$
Assume that

- an n-dim torus $T \subset \operatorname{Aut}(M, g, \eta)$ contains the Reeb flow, and
- κ_{X} is holomorphically trivial.
(1)

$$
\frac{2 \pi^{n}}{(n-1)!} \lim _{t \rightarrow 0} t^{n} L\left(e^{-b t}\right)=\frac{2 \pi^{n}}{(n-1)!} \int_{\mathcal{C}^{*}} e^{-(b, y)} d y_{1} \cdots d y_{n}
$$

for $b \in \operatorname{Lie}\left(T_{\mathbb{C}}\right)$ with $\operatorname{Im} b \gg 0$.
(2)

$$
\operatorname{Vol}\left(M, g_{b}\right)=\frac{2 \pi^{n}}{(n-1)!} \int_{\mathcal{C}^{*}} e^{-(b, y)} d y_{1} \cdots d y_{n}
$$

where g_{b} is the Sasakian metric obtained by deformation of type I whose Reeb vector field is equal to $b_{\#}$.

Example

Consider a cone $\mathcal{C}^{*}=\left\{y \in \mathbb{R}^{3} \mid\left(v_{i}, y\right) \geq 0\right\}$, where $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{3}$ are given by

$$
v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad v_{2}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad v_{3}=\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right) .
$$

Here \mathcal{C}^{*} is the moment polytope of the cone of a 5 -dimensional toric Sasakian manifold M (Cho-Futaki-Ono's characterization).

Example

The vectors tangent to 1 -dimensional faces of \mathcal{C}^{*} are

$$
w_{1}=\left(\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right), \quad w_{2}=\left(\begin{array}{c}
0 \\
4 \\
-2
\end{array}\right), \quad w_{3}=\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)
$$

Here note that we have

$$
\left(x, w_{i}\right)=\operatorname{det}\left(x, v_{j}, v_{k}\right), \quad \forall x \in \mathbb{R}^{3},
$$

where $(i, j, k)=(1,2,3),(2,3,1),(3,1,2)$.

Example

We will compute the characteristic function $\sigma_{\mathcal{C}^{*}}$ of \mathcal{C}^{*} defined by

$$
\sigma_{\mathcal{C}^{*}}(y)=\sum_{m \in \mathcal{S}} y^{m},
$$

where $\mathcal{S}=\mathcal{C}^{*} \cap \mathbb{Z}^{3}$, with the technique of Beck-Haase-Sottile. Then, the Martelli-Sparks-Yau formula gives the volume of M.

Example

Consider the parallelepiped \mathcal{P} spanned by w_{1}, w_{2}, w_{3}, i.e.,

$$
\mathcal{P}=\left\{y \in \mathbb{R}^{3} \mid y=c_{1} w_{1}+c_{2} w_{2}+c_{3} w_{3}, 0 \leq \exists c_{i}<1(i=1,2,3)\right\} .
$$

Since \mathcal{C}^{*} is tiled with translates of \mathcal{P} by a semigroup

$$
\mathbb{Z}_{\geq 0} w_{1} \oplus \mathbb{Z}_{\geq 0} w_{2} \oplus \mathbb{Z}_{\geq 0} w_{3},
$$

for $y \in \mathbb{C}^{3}$ with sufficiently small absolute value, we have

$$
\sigma_{\mathcal{C}^{*}}(y)=\frac{\sigma_{\mathcal{P}}(y)}{\left(1-y^{w_{1}}\right)\left(1-y^{w_{2}}\right)\left(1-y^{w_{3}}\right)} .
$$

Example

Let $u_{1}=(1,-2,1)^{T}$ and $u_{2}=w_{2} / 2$. It is easy to see that the integer points contained in \mathcal{P} is $0, u_{1}, u_{2}$ and $u_{1}+u_{2}$. Then we have

$$
\sigma_{\mathcal{P}}(y)=1+y^{u_{1}}+y^{u_{2}}+y^{u_{1}+u_{2}}
$$

and hence

$$
\sigma_{\mathcal{C}^{*}}(y)=\frac{1+y^{u_{1}}+y^{u_{2}}+y^{u_{1}+u_{2}}}{\left(1-y^{w_{1}}\right)\left(1-y^{w_{2}}\right)\left(1-y^{w_{3}}\right)}
$$

Example

Let $L(q)$ be the holomorphic Lefschetz number of $q \in\left(\mathbb{C}^{\times}\right)^{3}$. Since $L(q)=\sigma_{\mathcal{C}^{*}}(q)$ as we saw in the last section, take $b=\left(b_{1}, b_{2}, b_{3}\right)^{T} \in \mathbb{C}^{3}$ and substitute $y=e^{-b t}=\left(e^{-b_{1} t}, e^{-b_{2} t}, e^{-b_{3} t}\right)^{T}$ to the last equation to have

$$
L\left(e^{-b t}\right)=\frac{1+e^{-\left(b, u_{1}\right) t}+e^{-\left(b, u_{2}\right) t}+e^{-\left(b, u_{1}+u_{2}\right) t}}{\left(1-e^{-\left(b, w_{1}\right) t}\right)\left(1-e^{-\left(b, w_{2}\right) t}\right)\left(1-e^{-\left(b, w_{3}\right) t}\right)}
$$

Thus we have

$$
\lim _{t \rightarrow 0} t^{3} L\left(e^{-b t}\right)=\frac{4}{\left(b, w_{1}\right)\left(b, w_{2}\right)\left(b, w_{3}\right)}
$$

By the formula of Martelli-Sparks-Yau, we have

$$
\operatorname{vol}(M)=\frac{4 \pi^{3}}{\left(b, w_{1}\right)\left(b, w_{2}\right)\left(b, w_{3}\right)}
$$

Example

The volume of toric Sasakian manifolds M can be computed in four other ways:

- $\operatorname{Vol}(M)=C \operatorname{Vol}(\Delta)$ by Martelli-Sparks-Yau. Then Lawrence's formula of the volume of polytope can be used.
- MSY's localization formula of the volume of M on an equivariant resolution of the singularity at the origin of $M \times \mathbb{R}_{+}$.
- the localization formula of basic cohomology of Killing foliations by Töben, Goertsches-Nozawa-Töben or
- the localization formula for K-contact manifolds due to Casselmann-Fisher.

Example

Theorem (Goertsches-N.-Töben)

Let \mathcal{C}^{*} be the momentum polytope \mathcal{C}^{*} of X. For each 1-dim T-orbit L, let $v_{1}^{L}, \ldots, v_{n-1}^{L}$ be normal vectors of \mathcal{C}^{*} such that $\Phi(L)\left(v_{i}^{L}\right)=0$. Assume that the vectors $v_{1}^{L}, \ldots, v_{n-1}^{L}$ are ordered so that $\operatorname{det}\left(b, v_{1}^{L}, \ldots, v_{n-1}^{L}\right)>0$. Then we have

$$
\begin{aligned}
\operatorname{vol}(M)=\frac{2 \pi^{n}}{(n-1)!} & \sum_{L} \frac{1}{\operatorname{det}\left(b, v_{1}^{L}, \ldots, v_{n-1}^{L}\right)} \\
& \frac{\operatorname{det}\left(v, v_{1}^{L}, \ldots, v_{n-1}^{L}\right)^{n-1}}{\prod_{i=1}^{n-1} \operatorname{det}\left(b, v_{1}^{L}, \ldots, v_{i-1}^{L}, v, v_{i+1}^{L}, \cdots, v_{n-1}^{L}\right)}
\end{aligned}
$$

where the right hand side is independent of $v \in \mathfrak{t}$.

R M. Beck, C. Haase, F. Sottile, Formulas of Brion, Lawrence, and Varchenko on rational generating functions for cones. Math. Intelligencer 31 (2009), 9-17.
(in A. Bergman, C.P. Herzog, The volume of some non-spherical horizons and the AdS/CFT correspondence. J. High Energy Phys. (2002), 30, 24 pp .
C.P. Boyer, K. Galicki, A note on toric contact geometry, J. Geom. Phys. 35 (2000), 288-298.
R.P. Boyer, K. Galicki, Sasakian Geometry, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2007.
R. Casselmann, J.M. Fisher, Localization for K-Contact Manifolds, to appear in J. Sympletic Geom., available at arXiv:1703.00333.
K. Cho, A. Futaki, H. Ono, Uniqueness and examples of compact toric Sasaki-Einstein metrics. Comm. Math. Phys. 277 (2008), no. 2, 439-458.
O. Goertsches, H. Nozawa, D. Töben, Localization of Chern-Simons type invariants of Riemannian foliations, Israel J. Math. 222, no. 2, (2017) 867-920.
© J.L. Koszul, Ouverts convexes homogènes des espaces affines. Math. Z. 79, (1962) 254-259.

R J. Lawrence, Polytope volume computation, Math. Comp. 57 (1991), no. 195, 259-271.

目 E. Lerman, Contact Toric Manifolds, J. Symplectic Geom. 1 (2002), 785-828.
目 S. Łojasiewicz, Introduction to complex analytic geometry. Translated from the Polish by Maciej Klimek. Birkhäuser Verlag, Basel, 1991. xiv+523 pp.
D. Martelli, J. Sparks, S.-T. Yau, The geometric dual of
D. Martelli, J. Sparks, S.-T. Yau, Sasaki-Einstein manifolds and volume minimisation, Comm. Math. Phys. 280 (2008), no. 3, 611-673.
目 J.-P. Serre, Faisceaux algébriques cohérents. Ann. of Math. (2) 61, (1955), 197-278.

图 T. Takahashi, Deformations of Sasakian structures and its application to the Brieskorn manifolds. Tôhoku Math. J. (2) 30, (1978), 37-43.
D. Töben, Localization of basic characteristic classes, Ann. Inst. Fourier, 64 no. 2 (2014), 537-570.
E.B. Vinberg, The theory of homogeneous convex cones. Trudy Moskov. Mat. Obšč. 12 (1963) 303-358.

Thank you for your attention!

