# Lagrangian Fibrations on Grassmannians and Cluster Transformations 

Yuichi Nohara

Joint work with Kazushi Ueda

Toric Topology 2019 in Okayama Okayama University of Science November 21, 2019

## Introduction

For each triangulation of a convex $n$-gon, one can associate
(1) a completely integrable system on $\operatorname{Gr}(2, n)=\operatorname{Gr}\left(2, \mathbb{C}^{n}\right)$ (N.-Ueda)
(2) a toric degeneration of $\operatorname{Gr}(2, n)$ (Speyer-Sturmfels)
(3) a cluster chart on the Landau-Ginzburg mirror of $\operatorname{Gr}(2, n)$ (Fomin-Zelevinsky)
"Theorem". (1) and (3) are SYZ mirror.

## Triangulations

For a triangulation of a convex $n$-gon
(dual graph $\underset{\longrightarrow}{ }$ a trivalent tree with $n$ leaves), set

$$
\begin{aligned}
\Gamma^{\text {diag }} & =\text { the set of diagonals }(i, j), \\
\Gamma^{\text {side }} & :=\{(i, i+1) \mid i=1, \ldots, n\}, \\
\Gamma & :=\Gamma^{\text {side }} \cup \Gamma^{\text {diag }},
\end{aligned}
$$

where $(n, n+1):=(1, n)$.


Remark. $\# \Gamma^{\text {side }}=n, \# \Gamma^{\text {diag }}=n-3$, and

$$
\# \Gamma=(2 n-4)+1=\operatorname{dim}_{\mathbb{C}} \operatorname{Gr}(2, n)+1
$$

## Lagrangian torus fibrations on the Grassmannian $\operatorname{Gr}(2, n)$

Theorem (N.-Ueda). For each triangulation $\Gamma$ of a convex $n$-gon, one can associate a completely integrable system

$$
\Phi_{\Gamma}=\left(\varphi_{i j}\right)_{(i, j) \in \Gamma \backslash\{(1, n)\}}: \operatorname{Gr}(2, n) \rightarrow \mathbb{R}^{N}
$$

where $N=\operatorname{dim}_{\mathbb{C}} \operatorname{Gr}(2, n)=2 n-4$. The image $\Delta_{\Gamma}=\Phi_{\Gamma}(\operatorname{Gr}(2, n))$ is an $N$-dimensional convex polytope.

Example $(n=4) . \Phi_{\Gamma}: \operatorname{Gr}(2,4) \rightarrow \mathbb{R}^{4}$ coincides with the Gelfand-Cetlin system for each $\Gamma$ (up to $U(4)$-action). $\Delta_{\Gamma}$ has an edge $\cong[0, \lambda]$ on which the fibers of $\Phi_{\Gamma}$ are non-torus Lagrangians:

$$
L_{t} \cong U(2) \cong S^{1} \times S^{3} \quad(0<t<\lambda)
$$



Construction of $\Phi_{\Gamma}: \operatorname{Gr}(2, n) \rightarrow \mathbb{R}^{N}$

Identify $\operatorname{Gr}(2, n)$ with the adjoint orbit $\mathcal{O}_{\lambda}$ of $\operatorname{diag}(\lambda, \lambda, 0, \ldots, 0)$ in $\sqrt{-1} \mathfrak{u}(n)$ :

$$
\mathcal{O}_{\lambda}=\{x \in \sqrt{-1} \mathfrak{u}(n) \mid \text { eigenval. }=\lambda, \lambda, 0, \ldots, 0\}
$$

For each $(i, j) \in \Gamma \backslash\{(1, n)\}$, define

$$
\varphi_{i j}(x)=\text { max. eigenvalue of }\left(x_{k l}\right)_{i \leq k, l<j}
$$



Remark. If the triangulation $\Gamma$ is "caterpillar", $\Phi_{\Gamma}$ is the Gelfand-Cetlin system (GuilleminSternberg).


Toric degenerations of $\operatorname{Gr}(2, n)$

Theorem (Speyer-Sturmfels).
\{toric degenerations of $\operatorname{Gr}(2, n)$ \}/ ~
$\stackrel{1-1}{\longleftrightarrow}\{$ trivalent trees with $n$ leaves $\Gamma\}$.
Theorem (N.-Ueda). For each triangulation $\Gamma$ of a convex $n$-gon, the central fiber $X_{\Gamma}$ of the corresponding toric degeneration

has moment polytope $\Delta_{\Gamma}$. Furthermore, $\Phi_{\Gamma}: \operatorname{Gr}(2, n) \rightarrow \Delta_{\Gamma}$ can be deformed into the toric moment map $X_{\Gamma} \rightarrow \Delta_{\Gamma}$.

## Mirror Symmetry for Fano Manifolds

$X: N$-dim. Fano $\longleftrightarrow\left(X^{\vee}, W\right)$ : Landau-Ginzburg model

$$
\binom{c_{1}(X)>0}{\Leftrightarrow \text { Ric }>0} \quad\binom{X^{\vee}: \text { a non-cpt cpx mfd. }}{W: X^{\vee} \rightarrow \mathbb{C}(\text { or } \wedge)}
$$

Symp. (resp. cpx.) geom. $\longleftrightarrow C p x$. (resp. symp.) geom.
"Classical" Mirror Symmetry

$$
Q H^{*}(X ; \wedge) \cong \operatorname{Jac}(W) "=" \wedge\left[y_{1}^{ \pm 1}, \ldots, y_{N}^{ \pm 1}\right] /\left(\frac{\partial W}{\partial y_{1}}, \ldots, \frac{\partial W}{\partial y_{N}}\right),
$$

where $\wedge=\left\{\sum_{i=1}^{\infty} a_{i} T^{\lambda_{i}} \mid a_{i} \in \mathbb{C}, \lambda_{i} \in \mathbb{R}, \lambda_{i} \rightarrow \infty\right\}$ is the Novikov field.
Example. $\left(\mathbb{P}^{1}, \lambda \omega_{\mathrm{FS}}\right) \stackrel{\text { mirror }}{\longleftrightarrow}\left(X^{\vee}=\mathbb{C}^{\times}, W(y)=y+\frac{Q}{y}\right), \quad Q=T^{\lambda}$.

$$
\operatorname{Jac}(W)=\wedge\left[y^{ \pm}\right] /\left(1-Q / y^{2}\right)=\wedge[y] /\left(y^{2}-Q\right) \cong Q H^{*}\left(\mathbb{P}^{1} ; \wedge\right)
$$

cf. $H^{*}\left(\mathbb{P}^{1} ; \wedge\right) \cong \wedge[y] /\left(y^{2}=0\right)$.

## Strominger-Yau-Zaslow Conjecture

$X$ and $X^{\vee}$ admit dual (special) Lagrangian torus fibrations

i.e., $\left(\Phi^{\vee}\right)^{-1}(\boldsymbol{u})=$ moduli of flat $U(1)$-connections on $L(\boldsymbol{u})=\Phi^{-1}(\boldsymbol{u})$.

$$
X^{\vee}=\text { moduli space of "Lagrangian branes" }(L(\boldsymbol{u}), \nabla)
$$

The superpotential $W$ is given by the disk potential

$$
\begin{aligned}
\mathfrak{P O}(L, \nabla) & =\sum_{\beta \in \pi_{2}(X, L)} n(\beta) z_{\beta}(L, \nabla), \\
z_{\beta}(L, \nabla) & =T^{\omega(\beta)} \operatorname{hol}_{\nabla}(\partial \beta),
\end{aligned}
$$

where

$$
\begin{aligned}
& n(\beta)=" \not \#^{\prime}\left\{v:\left(D^{2}, \partial D^{2}\right) \xrightarrow[\rightarrow]{\text { hol. }}(X, L) \mid[v]=\beta\right\} \\
& \text { hol }_{\nabla}(\partial \beta)=\text { holonomy of } \nabla \text { along } v\left(\partial D^{2}\right) \subset L
\end{aligned}
$$



## Example: SYZ mirror of $\mathbb{P}^{1}$

For a Lagrangian fiber $L(u) \subset \mathbb{P}^{1}$ of the moment map

$$
\Phi:\left(\mathbb{P}^{1}, \lambda \omega_{\mathrm{FS}}\right) \rightarrow \Delta=[0, \lambda]
$$

and a flat $U(1)$-connection

$$
\nabla=d+\sqrt{-1} x d \theta, \quad \theta \in \mathbb{R} / \mathbb{Z} \cong L(u)
$$


$\Phi \downarrow$
$\Delta \longrightarrow$


$$
\begin{aligned}
\mathfrak{P O}(L(u), \nabla) & =\sum_{i=1}^{2} T^{\omega\left(D_{i}\right)} \operatorname{hol}_{\nabla}\left(\partial D_{i}\right) \\
& =T^{u} e^{\sqrt{-1} x}+T^{\lambda-u} e^{-\sqrt{-1} x} \\
& =y+\frac{Q}{y}
\end{aligned}
$$

where $y=T^{u} e^{\sqrt{-1} x}, Q=T^{\lambda}$.
$L(u)$


## Potential function for Lagrangian torus fibers $L(\boldsymbol{u})$

Theorem (Cho-Oh, Fukaya-Oh-Ohta-Ono). Let $X$ be a toric Fano manifold, and write its moment polytope as

$$
\Delta=\left\{\boldsymbol{u} \in \mathbb{R}^{N} \mid \ell_{j}(\boldsymbol{u})=\left\langle\boldsymbol{v}_{j}, \boldsymbol{u}\right\rangle-\tau_{j} \geq 0, j=1, \ldots, m\right\}
$$

for primitive $\boldsymbol{v}_{i} \in \mathbb{Z}^{N}$. Then for a Lagrangian torus fibers $L(\boldsymbol{u})$ and a flat $U(1)$-connection $\nabla=d+\sqrt{-1} \sum_{i} x_{i} d \theta_{i}$ on $L(\boldsymbol{u})$,

$$
\begin{aligned}
& \mathfrak{P O}(\boldsymbol{u}, \boldsymbol{x})=\mathfrak{P O}(L(\boldsymbol{u}), \nabla)=\sum_{j=1}^{m} z_{\beta_{j}}(\boldsymbol{u}, \boldsymbol{x}), \\
& z_{\beta_{j}}(\boldsymbol{u}, \boldsymbol{x})=T^{\ell_{j}(\boldsymbol{u})} e^{\sqrt{-1}\left\langle\boldsymbol{v}_{j}, \boldsymbol{x}\right\rangle}=T^{-\tau_{j}} \boldsymbol{y}_{j}
\end{aligned}
$$

Furthermore, $\mathfrak{P O}$ coincides with the superpotential of the $L G$ mirror of $X$.


## Landau-Ginzburg mirror of Grassmannians

Marsh-Rietsch: The LG mirror of $\operatorname{Gr}(k, n)=\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)$ is given by

$$
\left(X^{\vee}=\operatorname{Gr}\left(n-k,\left(\mathbb{C}^{n}\right)^{*}\right) \backslash D, W\right)
$$

where $D$ is an anti-canonical divisor of $\operatorname{Gr}\left(n-k,\left(\mathbb{C}^{n}\right)^{*}\right)$.

Remark. $X^{\vee}$ is a partial compactification of $\left(\mathbb{C}^{\times}\right)^{N}, N=\operatorname{dim}_{\mathbb{C}} \operatorname{Gr}(k, n)$.
$k=2$ case: Identify $\operatorname{Gr}\left(n-2,\left(\mathbb{C}^{n}\right)^{*}\right) \cong \operatorname{Gr}\left(2, \mathbb{C}^{n}\right)=\operatorname{Gr}(2, n)$.

$$
\begin{aligned}
D & =\bigcup_{i \in \mathbb{Z} / n \mathbb{Z}}\left\{p_{i, i+1}=0\right\}, \\
W & =\sum_{i=1}^{n-2} \frac{p_{i, i+2}}{p_{i, i+1}}+Q \frac{p_{1, n-1}}{p_{n-1, n}}+\frac{p_{2, n}}{p_{1, n}}
\end{aligned}
$$

where $\left[p_{i j}\right]_{1 \leq i<j \leq n}$ are the Plücker coordinates on $\operatorname{Gr}(2, n) \subset \mathbb{P}\left(\bigwedge^{2} \mathbb{C}^{n}\right)$.

The disk potential for $\Phi_{\Gamma}: \operatorname{Gr}(2, n) \rightarrow \Delta_{\Gamma}$

Theorem (N.-Ueda). For each triangulation $\Gamma$, the disk potential $\mathfrak{P O}_{\Gamma}$ for the Lagrangian torus fibers of $\Phi_{\Gamma}$ is given by the same formula as in the toric Fano case:

$$
\mathfrak{P} \mathfrak{O}_{\Gamma}(\boldsymbol{y})=\sum_{i=1}^{m} T^{-\tau_{j}} \boldsymbol{y}^{\boldsymbol{v}_{j}}, \quad \Delta_{\Gamma}=\left\{\boldsymbol{u} \mid\left\langle\boldsymbol{v}_{j}, \boldsymbol{u}\right\rangle-\tau_{j} \geq 0, \quad j=1, \ldots, m\right\}
$$

which gives a rational function

$$
\mathfrak{P O} \mathfrak{\Gamma}:\left(\mathbb{C}^{\times}\right)^{N}=\left(\mathbb{C}^{\times}\right)^{\Gamma \backslash\{(1, n)\}} \longrightarrow \mathbb{C} .
$$

Moreover, there exists an embedding $\iota:\left(\mathbb{C}^{\times}\right)^{N} \hookrightarrow X^{\vee}$ such that

$$
\iota_{\Gamma}^{*} W=\mathfrak{P O}{ }_{\Gamma} .
$$

Idea of the proof. Deform $\Phi_{\Gamma}$ into a toric moment map, and count holomorphic disks in a (singular) toric variety.

Cluster charts on $\operatorname{Gr}(2, n)$

A cluster algebra is a commutative ring generated by a "system" of cluster variables. Two sets of cluster variables $\boldsymbol{x}=\left\{x_{1}, \ldots, x_{N}\right\}$ and $\boldsymbol{x}^{\prime}=\left(\boldsymbol{x} \backslash\left\{x_{k}\right\}\right) \cup\left\{x_{k}^{\prime}\right\}$ are related by an cluster mutation

$$
x_{k} x_{k}^{\prime}=\prod_{i \rightarrow k} x_{i}+\prod_{i \leftarrow k} x_{i}
$$

Cluster algebra structure on $\mathbb{C}[\operatorname{Gr}(2, n)]$

$$
\begin{aligned}
& \text { cluster var. }\left\{p_{i j}\right\}_{(i, j) \in \Gamma}=\{\underbrace{\left(p_{i j}\right)_{(i, j) \in \Gamma^{\text {diag }}}}_{\text {mutable }}, \underbrace{\left(p_{i j}\right)_{(i, j) \in \Gamma^{\text {side }}}}_{\text {frozen }}\}, \\
& \text { cluster mutation }=\text { Plücker rel. } \quad p_{i k} p_{j l}=p_{i j} p_{k l}+p_{i l} p_{j k} .
\end{aligned}
$$

The "SYZ mirror" of $\Phi_{\Gamma} \operatorname{Gr}(2, n) \rightarrow \Delta_{\Gamma}$ gives a cluster chart

$$
U_{\Gamma}:=\iota_{\Gamma}\left(\left(\mathbb{C}^{\times}\right)^{N}\right)=\left\{\left[p_{i j}\right] \in \operatorname{Gr}(2, n) \mid p_{i j} \neq 0,(i, j) \in \Gamma\right\}
$$

## Wall-crossing formula for disk counting

If a Lagrangian torus fibration $\Phi: X \rightarrow B$ has a singular fiber, the weighted count $z_{\beta}(L, \nabla)$ of pseudo-holo. disks for Lag. fibers $L=\Phi^{-1}(\boldsymbol{u})$ changes when $\boldsymbol{u}$ crosses a wall
$\left\{\boldsymbol{u} \in B \mid L\right.$ bounds hol. disk of $\left.\mu_{L}=0\right\}$.


Theorem (Auroux, Pascaleff-Tonkonog). Assume that each fiber $L\left(\boldsymbol{u}_{0}\right)$ on the wall bounds a unique simple pseudo-holo. disk $\alpha$ of Maslov index 0 . Then $z_{\beta}$ 's on chambers separated by the wall are related by

$$
z_{\beta}(L, \nabla) \mapsto z_{\beta}(L, \nabla)(1+\underbrace{\sum_{k \geq 1} a_{k} z_{\alpha}(L, \nabla)^{k}}_{\text {disk bubbles }})^{[\partial \beta] \cdot[\partial \alpha]}
$$

## Wall-crossing formula and Plücker relations

Theorem (N.-Ueda). Suppose that $\Gamma$ and $\Gamma^{\prime}$ are related by a flip. Then there exists a 1-parameter family $\Phi_{t}(0 \leq t \leq 1)$ of Lagrangian fibrations on $\operatorname{Gr}(2, n)$ such that

$$
\Phi_{0}=\Phi_{\Gamma}, \quad \Phi_{1}=\Phi_{\Gamma^{\prime}}
$$

For $0<t<1$, the wall-crossing formula $z_{\beta^{\prime}}=z_{\beta}\left(1+z_{\alpha}\right)$ for $\Phi_{t}$ coincides with the Plücker relation

$$
\frac{p_{j l}}{p_{i j}} \cdot \frac{p_{i, i+1}}{p_{i l}}=\frac{p_{k l}}{p_{i k}} \cdot \frac{p_{i, i+1}}{p_{i l}}(1+\underbrace{\frac{p_{i l} p_{j k}}{p_{i j} p_{k l}}}_{\text {disk bubbles }})
$$



## Remarks

1. In general, $\bigcup_{\Gamma} U_{\Gamma} \nsubseteq X^{\vee}$, and $X^{\vee} \backslash \bigcup_{\Gamma} U_{\Gamma}$ contains critical points of the superpotential $W$. The complement should corresponds to

- non-torus Lagrangian fibers of $\Phi_{\Gamma}(N .-U e d a)$.
- singular Lagrangian fibers of $\Phi_{t}$ (Hong-Kim-Lau).

2. [Scott] For $k \geq 3, \mathbb{C}[\operatorname{Gr}(k, n)]$ is a cluster algebra such that \{Plücker coordinates $\} \nsubseteq$ \{cluster variables $\}$.

- ${ }^{\exists}$ Lagrangian fibrations corresponding to cluster charts given by Plücker coord. (Castronovo).
- wall-crossing on $\operatorname{Gr}(3,6)$ (In progress).

