Topology of orbit spaces of complexity 1 torus actions

Vladislav Cherepanov

Higher School of Economics
vilamsenton@gmail.com

November 21, 2019

Basic objects

Let us consider the following objects:

- $M^{2 n}$: a connected compact smooth $2 n$-manifold,
- $T^{k}=\underbrace{S^{1} \times \ldots \times S^{1}}_{k}$; the compact k-torus,
- $\theta: T^{k} \curvearrowright M^{2 n}$: an effective smooth action.

The number $d=n-k$ is called the complexity of the action of θ.

We also suppose the following conditions $\left({ }^{*}\right)$ to be satisfied:

- the set M^{T} of fixed points is finite and nonempty,
- for each point $x \in M^{2 n}$, its stabilizer subgroup $\operatorname{St}(x) \in T^{k}$ is connected,
- for each subgroup $H \subset T^{k}$, the closure of every connected component of the set $\left\{x \in M^{2 n} \mid S t(x)=H\right\}$ contains a point x^{\prime} such that $\operatorname{dim} S t\left(x^{\prime}\right)>\operatorname{dim} H$.
Question: what can be said about the quotient $M^{2 n} / T^{k}$?

Classical case $d=0$

A classical idea for studying group actions is constructing an equivariant topological model for the original space. In our case:

$$
M_{Q, \lambda}^{2 n}=\left(Q \times T^{n}\right) / \sim
$$

where $Q=M^{2 n} / T^{n}$ and λ is the characteristic function, mapping an orbit $T_{x} \in Q$ to its stabilizer subgroup $\operatorname{St}(x)$.

A classical object of study in toric topology is a class of manifolds called quasitoric manifolds. Characteristic data for recovering a quasitoric manifold $X=X_{P, \lambda}^{2 n}$ consists of:

- a simple n-polytope P,
- a characteristic function $\lambda: F_{i} \longrightarrow \mathbb{Z}^{n}$.

Such manifolds possess an action of complexity $d=0$ and the orbit space of such action is the polytope P.

Examples of complexity 1 actions

- The complex Grassmannian

$$
G r_{4,2}(\mathbb{C})=\left\{V \subset \mathbb{C}^{4} \mid \operatorname{dim} V=2\right\}
$$

Its orbit space $G r_{4,2} / T^{3} \cong S^{5}$.

- The full complex flag manifold

$$
F I_{3}(\mathbb{C})=\left\{V_{\bullet}=\left(\{0\} \subset V_{1} \subset V_{2} \subset \mathbb{C}^{3}\right) \mid \operatorname{dim} V_{i}=i\right\}
$$

Its orbit space $\mathrm{Fl}_{3} / T^{2} \cong S^{4}$.

- A quasitoric manifold $X_{P, \lambda}^{2 n}$ has an action of a generic subtorus $T^{n-1} \subset T^{n}$. Its orbit space $X_{P, \lambda}^{2 n} / T^{n-1} \cong S^{n+1}$.

All the examples we mentioned have orbit spaces homeomorphic to spheres. Is it normal?

The general position condition

Let $x \in M^{T}$, a fixed point, and consider the tangent representation of $T^{k} \curvearrowright T_{x} M^{2 n}$; there is a decomposition: $T_{x} M^{2 n} \cong V\left(\alpha_{1}\right) \oplus \ldots \oplus V\left(\alpha_{n}\right)$ where $V\left(\alpha_{i}\right)$ is the standard 1-dimensional complex representation given by $t z=\alpha_{i}(t) z, z \in \mathbb{C}$ and $\alpha_{i} \in \operatorname{Hom}\left(T^{k}, S^{1}\right) \cong \mathbb{Z}^{k}$. The vectors α_{i} are called the weights of the tangent representation of T^{k} at $x \in M^{T}$.

Definition

The weights $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{Z}^{k}$ are in j-general position (for $j \leq k$) if any j of them are linearly independent; the weights are in general position if they are in k-general position.

Definition

The action $T^{k} \curvearrowright M^{2 n}$ is in general position if the weights $\alpha_{1}, \ldots, \alpha_{n}$ are in general position for any fixed point $x \in M^{T}$.

Local properties of complexity 1 actions

Consider an action of T^{n-1} on $M^{2 n}$ satisfying (*).

Proposition

- If the action $T^{n-1} \curvearrowright M^{2 n}$ is in general position then the orbit space $Q=M^{2 n} / T^{n-1}$ is a topological manifold. Otherwise the orbit space $Q=M^{2 n} / T^{n-1}$ is a topological manifold with boundary $\partial Q \neq \emptyset$.

Therefore for the actions not in general position, the orbit space Q is not the sphere S^{n+1}.

Lemma

Let the tangent representation of T^{n-1} at $x \in M^{T}$ have the weights $\alpha_{1}, \ldots, \alpha_{n}$ such that $c_{1} \alpha_{1}+\ldots+c_{n} \alpha_{n}=0$ for $c_{i} \in \mathbb{Z}: \operatorname{gcd}\left(c_{i}\right)=1$. Then there is a neighbourhood U of x such that its orbit $T U \cong \mathbb{R}^{m+1} \times \mathbb{R}_{\geq 0}^{n-m}$ where m is the number of $c_{i}=0$.

Hessenberg varieties

Definition

A function $h:[n] \longrightarrow[n]$ is called a Hessenberg function if it satisfies the following:

- $h(i)>i$ for $i=1, \ldots, n-1$,
- $h(i+1) \geq h(i)$ for $i=1, \ldots, n-1$.

Definition

Fix a linear transformation $A: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ and a Hessenberg function h. Consider

$$
\operatorname{Hess}(A, h)=\left\{\left(\{0\} \subset V_{1} \subset \ldots \subset V_{n-1} \subset \mathbb{C}^{n}\right) \mid A V_{i} \subset V_{h(i)}\right\}
$$

- a Hessenberg variety defined by A and h.

It follows from the definition that $\operatorname{Hess}(A, h) \subset F I_{n}(\mathbb{C})$.

Hessenberg varieties

We consider regular (nonsingular) Hessenberg varieties $H_{h}=\operatorname{Hess}(\Lambda, h)$ where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), \lambda_{i} \neq \lambda_{j}$. It has an effective T^{n-1}-action and its complexity

$$
d=\sum_{i}(h(i)-i)-n+1
$$

Proposition

For H_{h} with $d>0$, the action is not in general position.
For $n=4$, there are two Hessenberg functions, namely $h=(2,4,4,4)$ and $h=(3,3,4,4)$ such that $d=1$. For the corresponding varieties, the following holds.

Example

The orbit space $H_{h} / T^{3} \cong S^{5} \backslash\left(\sqcup_{i=1}^{4} D^{5}\right)$ - the complement of four disjoint open disks in the 5 -sphere. In particular, $\partial\left(H_{h} / T^{3}\right) \cong \sqcup_{i=1}^{4} S^{4}$.

Hamiltonian torus actions of complexity 1

Suppose now that the manifold $M^{2 n}$ is symplectic and the action $T^{n-1} \curvearrowright M^{2 n}$ is Hamiltonian. In particular, there is a moment map $\mu: M^{2 n} \longrightarrow \mathbb{R}^{n-1}$; its image $\mu\left(M^{2 n}\right)=P^{n-1}$ is a convex polytope.

Theorem (Y.Karshon, S.Tolman '18)

If the action $T^{n-1} \curvearrowright M^{2 n}$ is in general position then the orbit space $M^{2 n} / T^{n-1}$ is homeomorphic to the sphere S^{n+1}.

Corollary

If the action $T^{n-1} \curvearrowright M^{2 n}$ is not in general position then the orbit space $M^{2 n} / T^{n-1}$ is homeomorphic to $S^{n+1} \backslash\left(U_{1} \sqcup \ldots \sqcup U_{m}\right)$ where U_{i} are open domains.

In particular, one can find (co)homology groups of the orbit space using the Alexander Duality: $\tilde{H}^{q}\left(M^{2 n} / T^{n-1}\right)=\tilde{H}_{n-q}\left(U_{1} \sqcup \ldots \sqcup U_{m}\right)$.

Orbits spaces of Hessenberg varieties for $\mathrm{n}=5$

In the case $n=5$, there are three possible Hessenberg functions h for which H_{h} has complexity $d=1$.

- $h=(2,3,5,5,5)$ and $h=(3,3,4,5,5)$. We have

$$
H_{h} / T^{4} \cong S^{6} \backslash\left(\# \kappa_{5} D^{6}\right)
$$

where $\# \kappa_{5} D^{6}$ denotes the connected sum of five open disks D^{6} along the full graph K_{5} on five vertices. In particular, $\partial\left(H_{h} / T^{4}\right) \cong \# K_{5} S^{5}$.

- $h=(2,4,4,5,5)$. We have

$$
H_{h} / T^{4} \cong S^{6} \backslash\left(\#_{\tilde{K}_{5,5}} D^{6}\right)
$$

where $\tilde{K}_{5,5}$ denotes the almost full graph (see Fig.1). In particular, $\partial\left(H_{h} / T^{4}\right) \cong \# \tilde{K}_{5,5} S^{5}$.

Almost full graph $\tilde{K}_{5,5}$

Figure: The almost full graph connecting two sets of vertices.

From the Alexander Duality it follows that:

$$
\begin{gathered}
H^{4}\left(Q_{(3,3,4,5,5)}\right)=H^{4}\left(S^{6} \backslash\left(\#{K_{5}} D^{6}\right)\right) \cong H_{1}\left(\#{K_{5}} D^{6}\right) \cong \mathbb{Z}^{6} \\
H^{4}\left(Q_{(2,4,4,5,5)}\right)=H^{4}\left(S^{6} \backslash\left(\#{\tilde{K_{5,5}}} D^{6}\right)\right) \cong H_{1}\left(\#{\tilde{K_{5}^{5}, 5}} D^{6}\right) \cong \mathbb{Z}^{11}
\end{gathered}
$$

and $H^{j}\left(Q_{(3,3,4,5,5)}\right)=H^{j}\left(Q_{(2,4,4,5,5)}\right)=0$ for $j \leq 3$.

Homologies of orbit spaces in general

Theorem (V.C. '19)

If the action $T^{n-1} \curvearrowright M^{2 n}$ is Hamiltonian then the reduced cohomology groups $\tilde{H}^{i}\left(M^{2 n} / T^{n-1}\right)=0$ for $i=0,1,2$.

Theorem (A. Ayzenberg, V.C. '19)

For a finite simplicial complex L, there is a smooth manifold $M^{2 n}$ with $H^{\text {odd }}\left(M^{2 n}\right)=0$ and an action of T^{n-1} such that $\tilde{H}_{q+3}\left(M^{2 n} / T^{n-1}\right)=\tilde{H}_{q}(L)$ for $q \geq 0$. In fact, $M^{2 n} / T^{n-1}$ is homotopy equivalent to $\Sigma^{3} L$.

Theorem (A. Ayzenberg, V.C. '19)

For a finite simplicial complex L, there is a smooth manifold $M^{2 n}$ with $H^{\text {odd }}\left(M^{2 n}\right)=0$ and an action of T^{n-1} in j-general position such that $M^{2 n} / T^{n-1}$ is homotopy equivalent to $\Sigma^{j+2} L$.

Further work

Theorem*

For a general action $T^{n-1} \curvearrowright M^{2 n}$, the reduced cohomology groups $\tilde{H}^{i}\left(M^{2 n} / T^{n-1}\right)=0$ for $i=0,1,2$.

Theorem*

If the action $T^{n-1} \curvearrowright M^{2 n}$ is in j-position then $\tilde{H}^{q}\left(M^{2 n} / T^{n-1}\right)=0$ for $q<j+2$.

Theorem*

More generally, if the action $T^{k} \curvearrowright M^{2 n}$ is in j-position then $\tilde{H}^{q}\left(M^{2 n} / T^{k}\right)=0$ for $q<j+2$.

