Adiabatic limits, Theta functions, and Geometric Quantization

1

Takahiko Yoshida

Meiji University

Based on arXiv:1904.04076

Purpose & Main Theorems

Geometric quantization

Geometric quantization \cdots a procedure to construct a Hilbert space (and a representation of $(C^{\infty}(M), \{,\})$) from the given symplectic manifold (M, ω) in the geometric way

Classical mechanics	Quantum mechanics
$(M, \omega) \longrightarrow$	$Q(M,\omega)$: Hilbert space
$f \in C^{\infty}(M) \longrightarrow$	$Q(f)$: operator on $Q(M, \omega)$
stips $O(\{f, g\}) = \frac{2\pi\sqrt{-1}}{\sqrt{-1}} \left\{ O(f) O(g) - O(g) O(f) \right\}$	

Q satisfies $Q(\lbrace f,g\rbrace) = \frac{2\pi\sqrt{-1}}{h} \{Q(f)Q(g) - Q(g)Q(f)\}$

Example (Canonical quantization)

$$egin{aligned} &\left(\mathbb{R}^{2n},\omega_0:=\sum_{i=1}^n dp_i\wedge dq_i
ight)&\longrightarrow Q(\mathbb{R}^{2n},\omega_0):=L^2(\mathbb{R}^n_q)\ &p_i,q_i\in C^\infty(\mathbb{R}^{2n})&\longrightarrow egin{aligned} &Q(p_i):=rac{h}{2\pi\sqrt{-1}}rac{\partial}{\partial q_i}\ &Q(q_i):=q_i imes \end{aligned}$$

Kostant-Souriau theory

 (M, ω) closed symplectic manifold

 (L, ∇^{L}) prequantum line bundle $\stackrel{\text{def}}{\Leftrightarrow} \begin{cases} L \to M \text{ Hermitian line bundle} \\ \nabla^{L} \text{ connection of } L \text{ with } \frac{\sqrt{-1}}{2\pi} \mathcal{F}_{\nabla^{L}} = \omega \end{cases}$

In the Kostant-Souriau theory, to obtain the quantum Hilbert space $Q(M, \omega)$, we need a polarization.

Definition

A polarization \mathcal{P} is an integrable Lagrangian distribution of $TM \otimes \mathbb{C}$.

• Let S be the sheaf of germs of covariant constant sections of L along \mathcal{P} .

When a polarization \mathcal{P} is given, $Q(M, \omega)$ is naively defined by

Definition

 $Q(M,\omega):=H^0(M;\mathcal{S})$

 (M, ω, J) closed Kähler manifold

 (L, h, ∇^{L}) holomorphic Hermitian line bundle with Chern connection

 \Rightarrow $T^{0,1}M$ can be taken to be a polarization \mathcal{P} .

Definition

$$Q_{K\ddot{a}hler}(M,\omega) := H^0(M;\mathcal{O}_L)$$

 When the Kodaira vanishing holds, dim Q_{Kāhler}(M, ω) = index of the Dolbeault operator with coefficients in L.

Example (Real quantization)

$$\pi \colon (M^{2n}, \omega) \to B^n \text{ Lagrangian fibration} \stackrel{\text{def}}{\Leftrightarrow} \begin{cases} \pi \colon \text{fiber bundle} \\ \omega|_{\text{fiber}} \equiv 0 \\ \text{dim fiber} = \frac{1}{2} \dim M \end{cases}$$

Example

$$\pi_0 \colon (\mathbb{R}^n \times T^n, \omega_0 := \sum_{i=1}^n dx_i \wedge dy_i) \to \mathbb{R}^n, \quad \pi_0(x, y) = x$$

Theorem (Arnold-Liouville)

Any Lagrangian fibration with compact, path-connected fibers is locally isomorphic to π_0 : $(\mathbb{R}^n \times T^n, \omega_0) \to \mathbb{R}^n$.

- We assume a fiber is compact and path-connected. \Rightarrow the fiber is T^n .
- *B* admits an integral affine structure (i.e., an atlas with integral affine transition maps)

 $(L, \nabla^{L}) \rightarrow (M, \omega) \stackrel{\pi}{\rightarrow} B$ Lagrangian fibration with prequantum line bundle

• $(L, \nabla^{L})|_{\pi^{-1}(b)}$ is a flat bundle for $\forall b \in B$.

Definition (Bohr-Sommerfeld (BS) point)

 $b \in B$ is Bohr-Sommerfeld $\stackrel{\text{def}}{\Leftrightarrow} \left\{ s \in \Gamma(L|_{\pi^{-1}(b)}) \mid \nabla^L s = 0 \right\} \neq \{0\}$

- BS points appear discretely.
- We denote by B_{BS} the set of BS points

Example (Local model)

$$\left(\mathbb{R}^n \times T^n \times \mathbb{C}, d - 2\pi\sqrt{-1}\sum_{i=1}^n x_i dy_i\right) \to \left(\mathbb{R}^n \times T^n, \omega_0\right) \stackrel{\pi_0}{\to} \mathbb{R}^n \ \therefore \ \mathbb{R}_{BS}^n = \mathbb{Z}^n$$

 $(L, \nabla^L) \to (M, \omega) \xrightarrow{\pi} B$ Lagrangian fibration with prequantum line bundle

⇒ The tangent bundle along the fiber $T_{\pi}M \otimes \mathbb{C}$ can be taken to be a polarization \mathcal{P} .

Assume (M, ω) is closed.

Theorem (Śniatycki)

$$H^{q}(M; S) = \begin{cases} \bigoplus_{b \in B_{BS}} \left\{ s \in \Gamma(L|_{\pi^{-1}(b)}) \mid \nabla^{L} s = 0 \right\} & \text{if } q = \frac{\dim_{\mathbb{R}} M}{2} \\ 0 & \text{if } q : \text{otherwise} \end{cases}$$

Definition (Real quantization)

$$Q_{real}(M,\omega) := \oplus_{b \in B_{BS}} \left\{ s \in \Gamma(L|_{\pi^{-1}(b)}) \mid \nabla^L s = 0
ight\}$$

Does $Q(M, \omega)$ depend on a choice of polarization?

Question

$$Q_{\text{K\"ahler}}(M,\omega) \cong Q_{\text{real}}(M,\omega)$$
 ?

- Several examples show it is true at least for dimension:
 - the moment map μ of a toric manifold (Danilov '78),

dim $H^0(M; \mathcal{O}_L) = \#\mu(M) \cap \mathfrak{t}^*_{\mathbb{Z}} = \#BS$ pts

- the Gelfand-Cetlin system on the complex flag manifold (Guillemin-Sternberg '83)
- the Goldman system on the moduli space of flat SU(2)-bundles on a Riemann surface (Jeffrey-Weitsman '92)

$Q_{K\ddot{a}hler} \cong Q_{real}$ as a limit of deformation of complex structures

Theorem (Baier-Florentino-Muorão-Nunes '11)

When M is a toric manifold, they give one-parameter families of

- $\{J^t\}_{t>0}$ complex structures of M
- $\{\sigma_m^t\}_{m \in \mu(M) \cap \mathfrak{t}_Z^*}$ bases of holomorphic sections of $L \to (M, J^t)$

such that for $\forall m \in \mu(M) \cap \mathfrak{t}_{\mathbb{Z}}^*$, σ_m^t converges to a delta-function section supported on $\mu^{-1}(m)$ as $t \to \infty$ in the following sense, for any section s of *L*,

$$\lim_{t\to\infty}\int_{M}\left\langle s,\frac{\sigma_m^t}{\|\sigma_m^t\|_{L^1}}\right\rangle_L\frac{\omega^n}{n!}=\int_{\mu^{-1}(m)}\left\langle s,\delta_m\right\rangle_Ld\theta_m.$$

- Similar results have been obtained (but only for non-singular fibers):
 - the Gelfand-Cetlin system on the complex flag manifold (Hamilton-Konno '14)
 - smooth irreducible complex algebraic variety with certain assumptions (Hamilton-Harada-Kaveh '16)

For a non-integrable J, we have several generalizations of the Kähler quantization. Among these is the Spin^{*c*} quantization.

Purpose

To generalize BFMN apporach to the Spin^c quantization.

Spin^c quantization – a generalization of the Kähler quantization

 $(L, \nabla^L) \to (M, \omega)$ closed symplectic manifold with prequantum line bundle

 \Rightarrow By taking a compatible almost complex structure *J*, we can obtain the Spin^c Dirac operator

$$D\colon \Gamma\left(\wedge^{\bullet}(T^*M)^{0,1}\otimes L\right)\to \Gamma\left(\wedge^{\bullet}(T^*M)^{0,1}\otimes L\right).$$

• *D* is a 1st order, formally self-adjoint, elliptic differential operator.

Definition (Spin^c quantization)

$$Q_{Spin^{c}}(M,\omega) := \ker(D|_{\wedge^{0, even}}) - \ker(D|_{\wedge^{0, odd}}) \in K(pt) \cong \mathbb{Z}$$

- dim Q_{Spin^c}(M, ω) = ind D depends only on ω and does not depend on the choice of J and ∇^L.
- If (M, ω, J) is Kähler (hence, (L, ∇^L) is holomorphic with Chern connection), then D = √2(∂ ⊗ L + ∂^{*} ⊗ L) and

ind
$$D = \sum_{q \ge 0} (-1)^q \dim H^q(M, \mathcal{O}_L).$$

11

Deformation of almost complex structure

 $\pi \colon (M, \omega) \to B$: Lagrangian fibration

J: compatible almost complex structure of (M, ω)

 $\Rightarrow TM = JT_{\pi}M \oplus T_{\pi}M$ ($T_{\pi}M$: tangent bundle along the fiber of π)

Definition

For each t > 0, define J^t by

$$J^{t}v := \begin{cases} \frac{1}{t}Jv & \text{if } v \in T_{\pi}M \\ tJv & \text{if } v \in JT_{\pi}M. \end{cases}$$

- J^t is still a compatible almost complex structure of (M, ω) .
- Assume J is invariant along the fiber of π . Then,

J: integrable \Leftrightarrow *J*^{*t*}: integrable $\forall t > 0$

- As t → +∞, T_πM becomes smaller and JT_πM becomes larger with respect to g^t := ω(·, J^t·). (adiabatic-type limit)
- For each t > 0, we denote by D^t the Dirac operator with respect to J^t .

Main Theorem

 $(L, \nabla^{L}) \rightarrow (M, \omega) \xrightarrow{\pi} B$: Lagrangian fibration with prequantum line bundle

J: compatible almost complex structure of (M, ω) invariant along the fiber of π

 $\{J^t\}_{t>0}$: the deformation of *J* defined as above

Theorem (Y '19)

Assume *M* is closed and *B* is complete (i.e., $\tilde{B} \cong \mathbb{R}^n$). For the given data and for each t > 0, we give orthogonal sections $\{\vartheta_m^t\}_{m \in B_{BS}}$ on *L* indexed by B_{BS} such that

1. each ϑ_m^t converges to a delta-function section supported on $\pi^{-1}(m)$ as $t \to \infty$ in the following sense, for any section *s* of *L*,

$$\lim_{t\to\infty}\int_{M}\left\langle \boldsymbol{s},\frac{\vartheta_{m}^{t}}{\|\vartheta_{m}^{t}\|_{L^{1}}}\right\rangle _{L}\frac{\omega^{n}}{n!}=\int_{\pi^{-1}(m)}\left\langle \boldsymbol{s},\delta_{m}\right\rangle _{L}|d\boldsymbol{y}|.$$

 $2. \quad \lim_{t\to\infty} \|D^t\vartheta^t_m\|_{L^2} = 0.$

Moreover, if *J* is integrable, then, with a technical assumption, we can take $\{\vartheta_m^t\}_{m\in B_{BS}}$ to be an orthogonal basis of holomorphic sections of $L \to (M, \omega, J^t)$.

Corollary

When $\pi = p_1 \colon M = T^n \times T^n \to B = T^n$,

$$\vartheta_m(x,y) = e^{\pi \sqrt{-1}(-m \cdot \Omega m + x \cdot \Omega x)} \vartheta \begin{bmatrix} m \\ 0 \end{bmatrix} (-\Omega x + y, \Omega) \, .$$

Construction of ϑ_m^t

 $(L, \nabla^L) \to (M, \omega) \stackrel{\pi}{\to} B$ Lagrangian fibration with prequantum line bundle

Key lemma1

If B is complete, then, the pull-back of $(L, \nabla^L) \to (M, \omega) \xrightarrow{\pi} B$ to \tilde{B} is identified with

$$(\tilde{L}, \nabla^{\tilde{L}}) := \left(\mathbb{R}^n \times T^n \times \mathbb{C}, d - 2\pi\sqrt{-1}\sum_{i=1}^n x_i dy_i\right) \to (\mathbb{R}^n \times T^n, \omega_0) \stackrel{\pi_0}{\to} \mathbb{R}^n.$$

In paticular, $(L, \nabla^L) \to (M, \omega) \xrightarrow{\pi} B$ is obtained as the quotient of this standard model by the $\pi_1(B)$ -action.

Compatible almost complex structures

Let S_n be the Siegel upper half space

$$\mathcal{S}_n := \{ Z = X + \sqrt{-1} Y \in M_n(\mathbb{C}) \mid X, Y \in M_n(\mathbb{R}), {}^t Z = Z, Y > 0 \}.$$

Lemma

• J on $(M, \omega) \Leftrightarrow \pi_1(B)$ -equiv. \tilde{J} on $(\mathbb{R}^n \times T^n, \omega_0)$

Lemma

For any π : $(M, \omega) \to B$, there exists J of (M, ω) s.t. the pull-back of J to $(\mathbb{R}^n \times T^n, \omega_0)$ is invariant under the natural T^n -action.

We assume such a condition on J. ⇒ Z_J ∈ C[∞](ℝⁿ, S_n).

Let

$$\tilde{D}\colon \Gamma\left(\wedge^{\bullet}T^{*}(\mathbb{R}^{n}\times T^{n})^{0,1}\otimes\tilde{L}\right)\to \Gamma\left(\wedge^{\bullet}T^{*}(\mathbb{R}^{n}\times T^{n})^{0,1}\otimes\tilde{L}\right)$$

be the Spin^c Dirac operator associated with a $\pi_1(B)$ -equivariant \tilde{J} on $(\mathbb{R}^n \times T^n, \omega_0)$ corresponding to $Z = X + \sqrt{-1}Y$.

Lemma

For
$$s = \sum_{m \in \mathbb{Z}^n} a_m(x) e^{2\pi \sqrt{-1}m \cdot y} \in \Gamma ((\mathbb{R}^n \times T^n \times \mathbb{C})),$$

$$0 = \tilde{D}s \iff 0 = \begin{pmatrix} \partial_{x_1} a_m \\ \vdots \\ \partial_{x_n} a_m \end{pmatrix} + 2\pi \sqrt{-1} a_m \Omega(m - x) \quad \forall m \in \mathbb{Z}^n,$$
(1)

where

$$\Omega := (Y + XY^{-1}X)^{-1}ZY^{-1} \in C^{\infty}(\mathbb{R}^n, \mathcal{S}_n).$$

$$0 = \begin{pmatrix} \partial_{x_1} a_m \\ \vdots \\ \partial_{x_n} a_m \end{pmatrix} + 2\pi \sqrt{-1} a_m \Omega(m - x) \quad \forall m \in \mathbb{Z}^n.$$
 (1)

Key lemma2

The following conditions are equivalent:

- (1) has a non-trivial solution a_m for $\forall m \in \mathbb{Z}^n$.
- $\partial_{x_i}\Omega_{jk} = \partial_{x_j}\Omega_{ik} \ \forall i, j, k = 1, \dots, n$
- J is integrable.

Moreover, in this case, the solution of (1) is

$$a_m(x) = a_m(0) \exp\left\{-2\pi\sqrt{-1}\sum_{i=1}^n \int_0^{x_i} \sum_{j=1}^n \Omega_{ij}(m_j - x_j) dx_i\Big|_{x_1 = \cdots = x_{i-1} = 0}\right\}$$

Integrable case

When *J* is integrable, for $\forall m \in F \cap \mathbb{Z}^n \cong B_{BS}$, define $s_m \in \Gamma((\mathbb{R}^n \times T^n \times \mathbb{C}))$ by

$$s_m(x, y) := \exp 2\pi \sqrt{-1} \left\{ -\sum_{i=1}^n \int_0^{x_i} \sum_{j=1}^n \Omega_{ij}(m_j - x_j) dx_i \Big|_{x_1 = \cdots = x_{i-1} = 0} + m \cdot y \right\}.$$

Definition

For $\forall m \in B_{BS}$, define $\vartheta_m \in \Gamma ((\mathbb{R}^n \times T^n \times \mathbb{C}))^{\pi_1(B)} \cong \Gamma (L)$ by

$$\vartheta_m(x,y) := \sum_{\gamma \in \pi_1(B)} \widetilde{\widetilde{\rho}}_{\gamma} \circ s_m \circ \widetilde{\rho}_{\gamma^{-1}}(x,y),$$

where $\tilde{\rho}, \tilde{\rho}$ are the $\pi_1(B)$ -actions on $\mathbb{R}^n \times T^n, \mathbb{R}^n \times T^n \times \mathbb{C}$, respectively.

Theorem

- If Y + XY⁻¹X is constant, then, all θ_m's converge absolutely and uniformly on M.
- 2. If all ϑ_m 's converge absolutely and uniformly on M, $\{\vartheta_m\}_{m \in B_{BS}}$ is an orthogonal basis of the space of holomorphic sections of $L \to (M, \omega, J)$. 19

When J is not integrable,

$$0 = \tilde{D}s \iff 0 = \begin{pmatrix} \partial_{x_1} a_m \\ \vdots \\ \partial_{x_n} a_m \end{pmatrix} + 2\pi \sqrt{-1} a_m \Omega(m - x) \quad \forall m \in \mathbb{Z}^n$$
(1)

has no solution. But, for each $m \in \mathbb{Z}^n$, the approxiamation

$$0 = \begin{pmatrix} \partial_{x_1} a_m \\ \vdots \\ \partial_{x_n} a_m \end{pmatrix} + 2\pi \sqrt{-1} a_m \Omega(m)(m-x)$$
(2)

has the following solution

$$s'_m(x,y) := e^{2\pi\sqrt{-1}N\left\{\frac{1}{2}(x-m)\cdot\Omega(m)(x-m)+m\cdot y\right\}},$$

where Ω is replaced by $\Omega(m)$, the value of Ω at *m*.

Definition

For $\forall m \in B_{BS}$, define $\vartheta_m \in \Gamma ((\mathbb{R}^n \times T^n \times \mathbb{C}))^{\pi_1(B)} \cong \Gamma (L)$ by

$$\vartheta_m(x,y) := \sum_{\gamma \in \pi_1(B)} \widetilde{\widetilde{
ho}}_{\gamma} \circ s'_m \circ \widetilde{
ho}_{\gamma^{-1}}(x,y).$$
 20

Proposition

- 1. ϑ_m converges absolutely and uniformly on M.
- 2. $\{\vartheta_m\}_{m\in B_{BS}}$ is an orthogonal family of the sections of L.

Thank you for your attention!