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Purpose & Main Theorems



Geometric quantization

Geometric quantization · · · a procedure to construct a Hilbert space (and a
representation of (C∞(M), { , })) from the given symplectic manifold (M, ω)

in the geometric way

Classical mechanics Quantum mechanics

(M, ω) // Q(M, ω) : Hilbert space

f ∈ C∞(M) // Q(f ) : operator on Q(M, ω)

Q satisfies Q({f , g}) = 2π
√
−1

h {Q(f )Q(g)−Q(g)Q(f )}

Example (Canonical quantization)

(
R2n, ω0 :=

n∑
i=1

dpi ∧ dqi

)
−→ Q(R2n, ω0) := L2(Rn

q)

pi , qi ∈ C∞(R2n) −→

Q(pi ) := h
2π
√
−1

∂
∂qi

Q(qi ) := qi×
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Kostant-Souriau theory

(M, ω) closed symplectic manifold

(L,∇L) prequantum line bundle def⇔

L→ M Hermitian line bundle

∇L connection of L with
√
−1

2π F∇L = ω

In the Kostant-Souriau theory, to obtain the quantum Hilbert space Q(M, ω),
we need a polarization.

Definition
A polarization P is an integrable Lagrangian distribution of TM ⊗ C.

• Let S be the sheaf of germs of covariant constant sections of L along P.

When a polarization P is given, Q(M, ω) is naively defined by

Definition

Q(M, ω) := H0(M;S)
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Example (Kähler quantization)

(M, ω, J) closed Kähler manifold

(L, h,∇L) holomorphic Hermitian line bundle with Chern connection

⇒ T 0,1M can be taken to be a polarization P.

Definition

QKähler(M, ω) := H0(M;OL)

• When the Kodaira vanishing holds, dim QKähler(M, ω) = index of the
Dolbeault operator with coefficients in L.
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Example (Real quantization)

π : (M2n, ω)→ Bn Lagrangian fibration def⇔


π : fiber bundle

ω|fiber ≡ 0

dim fiber = 1
2 dim M

Example

π0 : (Rn × T n, ω0 :=
n∑

i=1

dxi ∧ dyi )→ Rn, π0(x , y) = x

Theorem (Arnold-Liouville)
Any Lagrangian fibration with compact, path-connected fibers is locally
isomorphic to π0 : (Rn × T n, ω0)→ Rn.

• We assume a fiber is compact and path-connected. ⇒ the fiber is T n.

• B admits an integral affine structure (i.e., an atlas with integral affine
transition maps)
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Example (Real quantization) continued

(L,∇L)→ (M, ω)
π→ B Lagrangian fibration with prequantum line bundle

• (L,∇L)|π−1(b) is a flat bundle for ∀b ∈ B.

Definition (Bohr-Sommerfeld (BS) point)

b ∈ B is Bohr-Sommerfeld def⇔
{

s ∈ Γ(L|π−1(b)) | ∇Ls = 0
}
6= {0}

• BS points appear discretely.
• We denote by BBS the set of BS points

Example (Local model)

(
Rn × T n × C, d − 2π

√
−1

n∑
i=1

xi dyi

)
→ (Rn × T n, ω0)

π0→ Rn ∴ Rn
BS = Zn
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Example (Real quantization) continued

(L,∇L)→ (M, ω)
π→ B Lagrangian fibration with prequantum line bundle

⇒ The tangent bundle along the fiber TπM ⊗ C can be taken to be a
polarization P.

Assume (M, ω) is closed.

Theorem (Śniatycki)

Hq(M;S) =

⊕b∈BBS

{
s ∈ Γ(L|π−1(b)) | ∇Ls = 0

}
if q = dimR M

2

0 if q : otherwise

Definition (Real quantization)

Qreal (M, ω) := ⊕b∈BBS

{
s ∈ Γ(L|π−1(b)) | ∇

Ls = 0
}
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Does Q(M, ω) depend on a choice of polarization?

Question

QKähler(M, ω) ∼= Qreal (M, ω) ?

• Several examples show it is true at least for dimension:

– the moment map µ of a toric manifold (Danilov ’78),

dim H0(M;OL) = #µ(M) ∩ t∗Z = #BS pts

– the Gelfand-Cetlin system on the complex flag manifold
(Guillemin-Sternberg ’83)

– the Goldman system on the moduli space of flat SU(2)-bundles
on a Riemann surface (Jeffrey-Weitsman ’92)
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QKähler ∼= Qreal as a limit of deformation of complex structures

Theorem (Baier-Florentino-Muorão-Nunes ’11)
When M is a toric manifold, they give one-parameter families of

• {J t}t>0 complex structures of M

• {σt
m}m∈µ(M)∩t∗Z bases of holomorphic sections of L→ (M, J t )

such that for ∀m ∈ µ(M) ∩ t∗Z, σt
m converges to a delta-function section

supported on µ−1(m) as t →∞ in the following sense, for any section s of
L,

lim
t→∞

∫
M

〈
s,

σt
m

‖σt
m‖L1

〉
L

ωn

n!
=

∫
µ−1(m)

〈s, δm〉L dθm.

• Similar results have been obtained (but only for non-singular fibers):

– the Gelfand-Cetlin system on the complex flag manifold
(Hamilton-Konno ’14)

– smooth irreducible complex algebraic variety with certain
assumptions (Hamilton-Harada-Kaveh ’16)
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How about the non-Kähler case?

For a non-integrable J, we have several generalizations of the Kähler
quantization. Among these is the Spinc quantization.

Purpose
To generalize BFMN apporach to the Spinc quantization.
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Spinc quantization – a generalization of the Kähler quantization

(L,∇L)→ (M, ω) closed symplectic manifold with prequantum line bundle

⇒ By taking a compatible almost complex structure J, we can obtain the
Spinc Dirac operator

D : Γ
(
∧•(T ∗M)0,1 ⊗ L

)
→ Γ

(
∧•(T ∗M)0,1 ⊗ L

)
.

• D is a 1st order, formally self-adjoint, elliptic differential operator.

Definition (Spinc quantization)

QSpinc (M, ω) := ker(D|∧0,even )− ker(D|∧0,odd ) ∈ K (pt) ∼= Z

• dim QSpinc (M, ω) = ind D depends only on ω and does not depend on
the choice of J and ∇L.

• If (M, ω, J) is Kähler (hence, (L,∇L) is holomorphic with Chern
connection), then D =

√
2(∂̄ ⊗ L + ∂̄∗ ⊗ L) and

ind D =
∑
q≥0

(−1)q dim Hq(M,OL).
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Deformation of almost complex structure

π : (M, ω)→ B: Lagrangian fibration

J: compatible almost complex structure of (M, ω)

⇒ TM = JTπM ⊕ TπM (TπM: tangent bundle along the fiber of π)

Definition

For each t > 0, define J t by

J tv :=

 1
t Jv if v ∈ TπM

tJv if v ∈ JTπM.

• J t is still a compatible almost complex structure of (M, ω).

• Assume J is invariant along the fiber of π. Then,

J: integrable ⇔ J t : integrable ∀t > 0

• As t → +∞, TπM becomes smaller and JTπM becomes larger with
respect to gt := ω(·, J t ·). (adiabatic-type limit)

• For each t > 0, we denote by Dt the Dirac operator with respect to J t .
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Main Theorem

(L,∇L)→ (M, ω)
π→ B: Lagrangian fibration with prequantum line bundle

J: compatible almost complex structure of (M, ω) invariant along the fiber of π

{J t}t>0: the deformation of J defined as above

Theorem (Y ’19)

Assume M is closed and B is complete (i.e., B̃ ∼= Rn). For the given data
and for each t > 0, we give orthogonal sections {ϑt

m}m∈BBS on L indexed by
BBS such that

1. each ϑt
m converges to a delta-function section supported on π−1(m) as

t →∞ in the following sense, for any section s of L,

lim
t→∞

∫
M

〈
s,

ϑt
m

‖ϑt
m‖L1

〉
L

ωn

n!
=

∫
π−1(m)

〈s, δm〉L |dy |.

2. lim
t→∞
‖Dtϑt

m‖L2 = 0.

Moreover, if J is integrable, then, with a technical assumption, we can take
{ϑt

m}m∈BBS to be an orthogonal basis of holomorphic sections of
L→ (M, ω, J t ).
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Relation with Theta functions

Corollary
When π = p1 : M = T n × T n → B = T n,

ϑm(x , y) = eπ
√
−1(−m·Ωm+x·Ωx)ϑ

[
m
0

]
(−Ωx + y ,Ω) .
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Construction of ϑt
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Key lemma 1

(L,∇L)→ (M, ω)
π→ B Lagrangian fibration with prequantum line bundle

Key lemma1

If B is complete, then, the pull-back of (L,∇L)→ (M, ω)
π→ B to B̃ is

identified with

(L̃,∇L̃) :=

(
Rn × T n × C, d − 2π

√
−1

n∑
i=1

xidyi

)
→ (Rn × T n, ω0)

π0→ Rn.

In paticular, (L,∇L)→ (M, ω)
π→ B is obtained as the quotient of this

standard model by the π1(B)-action.
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Compatible almost complex structures

Let Sn be the Siegel upper half space

Sn := {Z = X +
√
−1Y ∈ Mn(C) | X ,Y ∈ Mn(R), tZ = Z ,Y > 0}.

Lemma

C∞(Rn × T n,Sn) oo 1 : 1 // {comp. almost cpx str. on (Rn × T n, ω0)}
∈ ∈

Z = X +
√
−1Y � // J̃ :=

(
XY−1 −Y − XY−1X
Y−1 −Y−1X

)

• J on (M, ω)⇔ π1(B)-equiv. J̃ on (Rn × T n, ω0)

Lemma
For any π : (M, ω)→ B, there exists J of (M, ω) s.t. the pull-back of J to
(Rn × T n, ω0) is invariant under the natural T n-action.

• We assume such a condition on J. ⇒ ZJ̃ ∈ C∞(Rn,Sn). 16



Dirac operator on (Rn × T n, ω0)

Let
D̃ : Γ

(
∧•T ∗(Rn × T n)0,1 ⊗ L̃

)
→ Γ

(
∧•T ∗(Rn × T n)0,1 ⊗ L̃

)
be the Spinc Dirac operator associated with a π1(B)-equivariant J̃ on
(Rn × T n, ω0) corresponding to Z = X +

√
−1Y .

Lemma

For s =
∑

m∈Zn am(x)e2π
√
−1m·y ∈ Γ ((Rn × T n × C)),

0 = D̃s ⇐⇒ 0 =


∂x1 am

...
∂xn am

+ 2π
√
−1amΩ(m − x) ∀m ∈ Zn, (1)

where
Ω := (Y + XY−1X )−1ZY−1 ∈ C∞(Rn,Sn).
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Key lemma 2

0 =


∂x1 am

...
∂xn am

+ 2π
√
−1amΩ(m − x) ∀m ∈ Zn. (1)

Key lemma2
The following conditions are equivalent:

• (1) has a non-trivial solution am for ∀m ∈ Zn.

• ∂xi Ωjk = ∂xj Ωik ∀i, j, k = 1, . . . , n

• J is integrable.

Moreover, in this case, the solution of (1) is

am(x) = am(0) exp

−2π
√
−1

n∑
i=1

∫ xi

0

n∑
j=1

Ωij (mj − xj )dxi

∣∣∣
x1=···=xi−1=0

 .
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Integrable case

When J is integrable, for ∀m ∈ F ∩ Zn ∼= BBS , define sm ∈ Γ ((Rn × T n × C))

by

sm(x , y) := exp 2π
√
−1

−
n∑

i=1

∫ xi

0

n∑
j=1

Ωij (mj − xj )dxi

∣∣∣
x1=···=xi−1=0

+ m · y

.
Definition

For ∀m ∈ BBS , define ϑm ∈ Γ ((Rn × T n × C))
π1(B) ∼= Γ (L) by

ϑm(x , y) :=
∑

γ∈π1(B)

≈
ργ ◦ sm ◦ ρ̃γ−1 (x , y),

where ρ̃, ≈
ρ are the π1(B)-actions on Rn × T n, Rn × T n × C, respectively.

Theorem

1. If Y + XY−1X is constant, then, all ϑm ’s converge absolutely and
uniformly on M.

2. If all ϑm ’s converge absolutely and uniformly on M, {ϑm}m∈BBS is an
orthogonal basis of the space of holomorphic sections of L→ (M, ω, J). 19



Non integrable case

When J is not integrable,

0 = D̃s ⇐⇒ 0 =


∂x1 am

...
∂xn am

+ 2π
√
−1amΩ(m − x) ∀m ∈ Zn (1)

has no solution. But, for each m ∈ Zn, the approxiamation

0 =


∂x1 am

...
∂xn am

+ 2π
√
−1amΩ(m)(m − x) (2)

has the following solution

s′m(x , y) := e2π
√
−1N{ 1

2 (x−m)·Ω(m)(x−m)+m·y},

where Ω is replaced by Ω(m), the value of Ω at m.

Definition

For ∀m ∈ BBS , define ϑm ∈ Γ ((Rn × T n × C))
π1(B) ∼= Γ (L) by

ϑm(x , y) :=
∑

γ∈π1(B)

≈
ργ ◦ s′m ◦ ρ̃γ−1 (x , y). 20



Non integrable continued

Proposition

1. ϑm converges absolutely and uniformly on M.

2. {ϑm}m∈BBS is an orthogonal family of the sections of L.
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Thank you for your attention!
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