Adiabatic limits, Theta functions, and Geometric Quantization

Takahiko Yoshida
Meiji University
Based on arXiv:1904.04076

Purpose \& Main Theorems

Geometric quantization

Geometric quantization ... a procedure to construct a Hilbert space (and a representation of $\left.\left(C^{\infty}(M),\{\},\right)\right)$ from the given symplectic manifold (M, ω) in the geometric way

Classical mechanics Quantum mechanics

$$
\begin{aligned}
(M, \omega) & \longrightarrow Q(M, \omega): \text { Hilbert space } \\
f \in C^{\infty}(M) & \longrightarrow Q(f): \text { operator on } Q(M, \omega)
\end{aligned}
$$

Q satisfies $Q(\{f, g\})=\frac{2 \pi \sqrt{-1}}{h}\{Q(f) Q(g)-Q(g) Q(f)\}$

Example (Canonical quantization)

$$
\begin{aligned}
\left(\mathbb{R}^{2 n}, \omega_{0}:=\sum_{i=1}^{n} d p_{i} \wedge d q_{i}\right) & \longrightarrow Q\left(\mathbb{R}^{2 n}, \omega_{0}\right):=L^{2}\left(\mathbb{R}_{q}^{n}\right) \\
p_{i}, q_{i} \in C^{\infty}\left(\mathbb{R}^{2 n}\right) & \longrightarrow\left\{\begin{array}{l}
Q\left(p_{i}\right):=\frac{h}{2 \pi \sqrt{-1}} \frac{\partial}{\partial q_{i}} \\
Q\left(q_{i}\right):=q_{i} \times
\end{array}\right.
\end{aligned}
$$

Kostant-Souriau theory

(M, ω) closed symplectic manifold
$\left(L, \nabla^{L}\right)$ prequantum line bundle $\stackrel{\text { def }}{\Leftrightarrow}\left\{\begin{array}{l}L \rightarrow M \text { Hermitian line bundle } \\ \nabla^{L} \text { connection of } L \text { with } \frac{\sqrt{-1}}{2 \pi} F_{\nabla^{L}}=\omega\end{array}\right.$
In the Kostant-Souriau theory, to obtain the quantum Hilbert space $Q(M, \omega)$, we need a polarization.

Definition

A polarization \mathcal{P} is an integrable Lagrangian distribution of $T M \otimes \mathbb{C}$.

- Let \mathcal{S} be the sheaf of germs of covariant constant sections of L along \mathcal{P}.

When a polarization \mathcal{P} is given, $Q(M, \omega)$ is naively defined by

Definition

$$
Q(M, \omega):=H^{0}(M ; \mathcal{S})
$$

Example (Kähler quantization)

(M, ω, J) closed Kähler manifold
$\left(L, h, \nabla^{L}\right)$ holomorphic Hermitian line bundle with Chern connection $\Rightarrow \quad T^{0,1} M$ can be taken to be a polarization \mathcal{P}.

Definition

$$
Q_{\text {Kähler }}(M, \omega):=H^{0}\left(M ; \mathcal{O}_{L}\right)
$$

- When the Kodaira vanishing holds, $\operatorname{dim} Q_{\text {Kähler }}(M, \omega)=$ index of the Dolbeault operator with coefficients in L.

Example (Real quantization)

$\pi:\left(M^{2 n}, \omega\right) \rightarrow B^{n}$ Lagrangian fibration $\stackrel{\text { def }}{\Leftrightarrow}\left\{\begin{array}{l}\pi: \text { fiber bundle } \\ \omega \mid \text { fiber } \equiv 0 \\ \text { dim fiber }=\frac{1}{2} \operatorname{dim} M\end{array}\right.$

Example

$$
\pi_{0}:\left(\mathbb{R}^{n} \times T^{n}, \omega_{0}:=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}\right) \rightarrow \mathbb{R}^{n}, \quad \pi_{0}(x, y)=x
$$

Theorem (Arnold-Liouville)

Any Lagrangian fibration with compact, path-connected fibers is locally isomorphic to $\pi_{0}:\left(\mathbb{R}^{n} \times T^{n}, \omega_{0}\right) \rightarrow \mathbb{R}^{n}$.

- We assume a fiber is compact and path-connected. \Rightarrow the fiber is T^{n}.
- B admits an integral affine structure (i.e., an atlas with integral affine transition maps)

Example (Real quantization) continued

$\left(L, \nabla^{L}\right) \rightarrow(M, \omega) \xrightarrow{\pi} B$ Lagrangian fibration with prequantum line bundle

- $\left.\left(L, \nabla^{L}\right)\right|_{\pi^{-1}(b)}$ is a flat bundle for $\forall b \in B$.

Definition (Bohr-Sommerfeld (BS) point)

$b \in B$ is Bohr-Sommerfeld $\stackrel{\text { def }}{\Leftrightarrow}\left\{s \in \Gamma\left(\left.L\right|_{\pi^{-1}(b)}\right) \mid \nabla^{L} s=0\right\} \neq\{0\}$

- BS points appear discretely.
- We denote by $B_{B S}$ the set of $B S$ points

Example (Local model)

$$
\left(\mathbb{R}^{n} \times T^{n} \times \mathbb{C}, d-2 \pi \sqrt{-1} \sum_{i=1}^{n} x_{i} d y_{i}\right) \rightarrow\left(\mathbb{R}^{n} \times T^{n}, \omega_{0}\right) \stackrel{\pi_{\rho}}{\rightarrow} \mathbb{R}^{n} \therefore \mathbb{R}_{B S}^{n}=\mathbb{Z}^{n}
$$

Example (Real quantization) continued

$\left(L, \nabla^{L}\right) \rightarrow(M, \omega) \xrightarrow{\pi} B$ Lagrangian fibration with prequantum line bundle
\Rightarrow The tangent bundle along the fiber $T_{\pi} M \otimes \mathbb{C}$ can be taken to be a polarization \mathcal{P}.

Assume (M, ω) is closed.

Theorem (Śniatycki)

$$
H^{q}(M ; \mathcal{S})= \begin{cases}\oplus_{b \in B_{B S}}\left\{s \in \Gamma\left(\left.L\right|_{\pi^{-1}(b)}\right) \mid \nabla^{L} s=0\right\} & \text { if } q=\frac{\operatorname{dim}_{\mathbb{R}} M}{2} \\ 0 & \text { if } q: \text { otherwise }\end{cases}
$$

Definition (Real quantization)

$$
Q_{\text {real }}(M, \omega):=\oplus_{b \in B_{B S}}\left\{s \in \Gamma\left(\left.L\right|_{\pi^{-1}(b)}\right) \mid \nabla^{L} s=0\right\}
$$

Does $Q(M, \omega)$ depend on a choice of polarization?

Question

$$
Q_{\text {Kähler }}(M, \omega) \cong Q_{\text {real }}(M, \omega) ?
$$

- Several examples show it is true at least for dimension:
- the moment map μ of a toric manifold (Danilov '78),

$$
\operatorname{dim} H^{0}\left(M ; \mathcal{O}_{L}\right)=\# \mu(M) \cap \mathfrak{t}_{\mathbb{Z}}^{*}=\# \mathrm{BS} \text { pts }
$$

- the Gelfand-Cetlin system on the complex flag manifold (Guillemin-Sternberg '83)
- the Goldman system on the moduli space of flat $S U(2)$-bundles on a Riemann surface (Jeffrey-Weitsman '92)

$Q_{\text {Kähler }} \cong Q_{\text {real }}$ as a limit of deformation of complex structures

Theorem (Baier-Florentino-Muorão-Nunes '11)

When M is a toric manifold, they give one-parameter families of

- $\left\{J^{t}\right\}_{t>0}$ complex structures of M
- $\left\{\sigma_{m}^{t}\right\}_{m \in \mu(M) n_{Z}^{*}}$ bases of holomorphic sections of $L \rightarrow\left(M, J^{t}\right)$
such that for $\forall m \in \mu(M) \cap t^{*}, \sigma_{m}^{t}$ converges to a delta-function section supported on $\mu^{-1}(m)$ as $t \rightarrow \infty$ in the following sense, for any section s of L,

$$
\lim _{t \rightarrow \infty} \int_{M}\left\langle s, \frac{\sigma_{m}^{t}}{\left\|\sigma_{m}^{t}\right\|_{L^{1}}}\right\rangle_{L} \frac{\omega^{n}}{n!}=\int_{\mu^{-1}(m)}\left\langle s, \delta_{m}\right\rangle_{L} d \theta_{m} .
$$

- Similar results have been obtained (but only for non-singular fibers):
- the Gelfand-Cetlin system on the complex flag manifold (Hamilton-Konno '14)
- smooth irreducible complex algebraic variety with certain assumptions (Hamilton-Harada-Kaveh '16)

How about the non-Kähler case?

For a non-integrable J, we have several generalizations of the Kähler quantization. Among these is the Spin^{c} quantization.

Purpose

To generalize BFMN apporach to the Spin ${ }^{c}$ quantization.

Spin c quantization - a generalization of the Kähler quantization

$\left(L, \nabla^{L}\right) \rightarrow(M, \omega)$ closed symplectic manifold with prequantum line bundle
\Rightarrow By taking a compatible almost complex structure J, we can obtain the Spin c Dirac operator

$$
D: \Gamma\left(\wedge^{\bullet}\left(T^{*} M\right)^{0,1} \otimes L\right) \rightarrow \Gamma\left(\wedge^{\bullet}\left(T^{*} M\right)^{0,1} \otimes L\right) .
$$

- D is a $1^{\text {st }}$ order, formally self-adjoint, elliptic differential operator.

Definition (Spin ${ }^{c}$ quantization)

$$
Q_{\text {Spinc }}(M, \omega):=\operatorname{ker}\left(\left.D\right|_{\wedge 0, \text { even }}\right)-\operatorname{ker}\left(\left.D\right|_{\wedge 0, \text { odd }}\right) \in K(p t) \cong \mathbb{Z}
$$

- $\operatorname{dim} Q_{\text {Spinc }}(M, \omega)=\operatorname{ind} D$ depends only on ω and does not depend on the choice of J and ∇^{L}.
- If (M, ω, J) is Kähler (hence, $\left(L, \nabla^{L}\right)$ is holomorphic with Chern connection), then $D=\sqrt{2}\left(\bar{\partial} \otimes L+\bar{\partial}^{*} \otimes L\right)$ and

$$
\text { ind } D=\sum_{q \geq 0}(-1)^{q} \operatorname{dim} H^{q}\left(M, \mathcal{O}_{L}\right)
$$

Deformation of almost complex structure

$\pi:(M, \omega) \rightarrow B$: Lagrangian fibration
J : compatible almost complex structure of (M, ω)
$\Rightarrow T M=J T_{\pi} M \oplus T_{\pi} M \quad\left(T_{\pi} M\right.$: tangent bundle along the fiber of $\left.\pi\right)$

Definition

For each $t>0$, define J^{t} by

$$
J^{t} v:= \begin{cases}\frac{1}{t} J v & \text { if } v \in T_{\pi} M \\ t J v & \text { if } v \in J T_{\pi} M .\end{cases}
$$

- J^{t} is still a compatible almost complex structure of (M, ω).
- Assume J is invariant along the fiber of π. Then,

$$
J \text { : integrable } \Leftrightarrow J^{t} \text { : integrable } \forall t>0
$$

- As $t \rightarrow+\infty, T_{\pi} M$ becomes smaller and $J T_{\pi} M$ becomes larger with respect to $g^{t}:=\omega\left(\cdot, J^{t}\right.$.). (adiabatic-type limit)
- For each $t>0$, we denote by D^{t} the Dirac operator with respect to J^{t}.

Main Theorem

$\left(L, \nabla^{L}\right) \rightarrow(M, \omega) \xrightarrow{\pi} B$: Lagrangian fibration with prequantum line bundle J : compatible almost complex structure of (M, ω) invariant along the fiber of π $\left\{J^{t}\right\}_{t>0}$: the deformation of J defined as above

Theorem (Y '19)

Assume M is closed and B is complete (i.e., $\tilde{B} \cong \mathbb{R}^{n}$). For the given data and for each $t>0$, we give orthogonal sections $\left\{\vartheta_{m}^{t}\right\}_{m \in B_{B S}}$ on L indexed by $B_{B S}$ such that

1. each ϑ_{m}^{t} converges to a delta-function section supported on $\pi^{-1}(m)$ as $t \rightarrow \infty$ in the following sense, for any section s of L,

$$
\lim _{t \rightarrow \infty} \int_{M}\left\langle s, \frac{\vartheta_{m}^{t}}{\left\|\vartheta_{m}^{t}\right\|_{L^{1}}}\right\rangle_{L} \frac{\omega^{n}}{n!}=\int_{\pi^{-1}(m)}\left\langle s, \delta_{m}\right\rangle_{L}|d y| .
$$

2. $\lim _{t \rightarrow \infty}\left\|D^{t} v_{m}^{t}\right\|_{L^{2}}=0$.

Moreover, if J is integrable, then, with a technical assumption, we can take $\left\{\vartheta_{m}^{t}\right\}_{m \in B_{B S}}$ to be an orthogonal basis of holomorphic sections of $L \rightarrow\left(M, \omega, J^{t}\right)$.

Relation with Theta functions

Corollary

When $\pi=\mathrm{p}_{1}: M=T^{n} \times T^{n} \rightarrow B=T^{n}$,

$$
\vartheta_{m}(x, y)=e^{\pi \sqrt{ }-\boldsymbol{1}(-m \cdot \Omega m+x \cdot \Omega x)} \vartheta\left[\begin{array}{c}
m \\
0
\end{array}\right](-\Omega x+y, \Omega) .
$$

Construction of ϑ_{m}^{t}

Key lemma 1

$\left(L, \nabla^{L}\right) \rightarrow(M, \omega) \xrightarrow{\pi} B$ Lagrangian fibration with prequantum line bundle

Key lemma1

If B is complete, then, the pull-back of $\left(L, \nabla^{L}\right) \rightarrow(M, \omega) \xrightarrow{\pi} B$ to \tilde{B} is identified with

$$
\left(\tilde{L}, \nabla^{\tilde{L}}\right):=\left(\mathbb{R}^{n} \times T^{n} \times \mathbb{C}, d-2 \pi \sqrt{-1} \sum_{i=1}^{n} x_{i} d y_{i}\right) \rightarrow\left(\mathbb{R}^{n} \times T^{n}, \omega_{0}\right) \xrightarrow{\pi_{0}} \mathbb{R}^{n} .
$$

In paticular, $\left(L, \nabla^{L}\right) \rightarrow(M, \omega) \xrightarrow{\pi} B$ is obtained as the quotient of this standard model by the $\pi_{1}(B)$-action.

Compatible almost complex structures

Let \mathcal{S}_{n} be the Siegel upper half space

$$
\mathcal{S}_{n}:=\left\{Z=X+\sqrt{-1} Y \in M_{n}(\mathbb{C}) \mid X, Y \in M_{n}(\mathbb{R}),{ }^{t} Z=Z, Y>0\right\} .
$$

Lemma

$$
\begin{gathered}
C^{\infty}\left(\mathbb{R}^{n} \times T^{n}, \mathcal{S}_{n}\right) \stackrel{1: 1}{\longleftrightarrow}\left\{\text { comp. almost cpx str. on }\left(\mathbb{R}^{n} \times T^{n}, \omega_{0}\right)\right\} \\
\psi \\
Z=X+\sqrt{-1} Y \longmapsto \\
\psi \tilde{J}:=\left(\begin{array}{cc}
X Y^{-1} & -Y-X Y^{-1} X \\
Y^{-1} & -Y^{-1} X
\end{array}\right)
\end{gathered}
$$

- J on $(M, \omega) \Leftrightarrow \pi_{1}(B)$-equiv. \tilde{J} on $\left(\mathbb{R}^{n} \times T^{n}, \omega_{0}\right)$

Lemma

For any $\pi:(M, \omega) \rightarrow B$, there exists J of (M, ω) s.t. the pull-back of J to $\left(\mathbb{R}^{n} \times T^{n}, \omega_{0}\right)$ is invariant under the natural T^{n}-action.

- We assume such a condition on $J . \Rightarrow Z_{J} \in C^{\infty}\left(\mathbb{R}^{n}, \mathcal{S}_{n}\right)$.

Dirac operator on $\left(\mathbb{R}^{n} \times T^{n}, \omega_{0}\right)$

Let

$$
\tilde{D}: \Gamma\left(\Lambda^{\bullet} T^{*}\left(\mathbb{R}^{n} \times T^{n}\right)^{0,1} \otimes \tilde{L}\right) \rightarrow \Gamma\left(\Lambda^{\bullet} T^{*}\left(\mathbb{R}^{n} \times T^{n}\right)^{0,1} \otimes \tilde{L}\right)
$$

be the Spin ${ }^{c}$ Dirac operator associated with a $\pi_{1}(B)$-equivariant \tilde{J} on ($\mathbb{R}^{n} \times T^{n}, \omega_{0}$) corresponding to $Z=X+\sqrt{-1} Y$.

Lemma

For $s=\sum_{m \in \mathbb{Z}^{n}} a_{m}(x) e^{2 \pi \sqrt{-1} m \cdot y} \in \Gamma\left(\left(\mathbb{R}^{n} \times T^{n} \times \mathbb{C}\right)\right)$,

$$
0=\tilde{D} s \Longleftrightarrow 0=\left(\begin{array}{c}
\partial_{x_{1}} a_{m} \tag{1}\\
\vdots \\
\partial_{x_{n}} a_{m}
\end{array}\right)+2 \pi \sqrt{-1} a_{m} \Omega(m-x) \quad \forall m \in \mathbb{Z}^{n}
$$

where

$$
\Omega:=\left(Y+X Y^{-1} X\right)^{-1} Z Y^{-1} \in C^{\infty}\left(\mathbb{R}^{n}, \mathcal{S}_{n}\right)
$$

Key lemma 2

$$
0=\left(\begin{array}{c}
\partial_{x_{1}} a_{m} \tag{1}\\
\vdots \\
\partial_{x_{n}} a_{m}
\end{array}\right)+2 \pi \sqrt{-1} a_{m} \Omega(m-x) \quad \forall m \in \mathbb{Z}^{n} .
$$

Key lemma2

The following conditions are equivalent:

- (1) has a non-trivial solution a_{m} for $\forall m \in \mathbb{Z}^{n}$.
- $\partial_{x_{i}} \Omega_{j k}=\partial_{x_{j}} \Omega_{i k} \forall i, j, k=1, \ldots, n$
- J is integrable.

Moreover, in this case, the solution of (1) is

$$
a_{m}(x)=a_{m}(0) \exp \left\{-\left.2 \pi \sqrt{-1} \sum_{i=1}^{n} \int_{0}^{x_{i}} \sum_{j=1}^{n} \Omega_{i j}\left(m_{j}-x_{j}\right) d x_{i}\right|_{x_{1}=\cdots=x_{i-1}=0}\right\} .
$$

Integrable case

When J is integrable, for $\forall m \in F \cap \mathbb{Z}^{n} \cong B_{B S}$, define $s_{m} \in \Gamma\left(\left(\mathbb{R}^{n} \times T^{n} \times \mathbb{C}\right)\right)$ by

$$
s_{m}(x, y):=\exp 2 \pi \sqrt{-1}\left\{-\left.\sum_{i=1}^{n} \int_{0}^{x_{i}} \sum_{j=1}^{n} \Omega_{i j}\left(m_{j}-x_{j}\right) d x_{i}\right|_{x_{1}=\cdots=x_{i-1}=0}+m \cdot y\right\}
$$

Definition

For $\forall m \in B_{B S}$, define $\vartheta_{m} \in \Gamma\left(\left(\mathbb{R}^{n} \times T^{n} \times \mathbb{C}\right)\right)^{\pi_{1}(B)} \cong \Gamma(L)$ by

$$
\vartheta_{m}(x, y):=\sum_{\gamma \in \pi_{1}(B)} \tilde{\rho}_{\gamma} \circ s_{m} \circ \tilde{\rho}_{\gamma^{-1}}(x, y),
$$

where $\tilde{\rho}, \tilde{\rho}$ are the $\pi_{1}(B)$-actions on $\mathbb{R}^{n} \times T^{n}, \mathbb{R}^{n} \times T^{n} \times \mathbb{C}$, respectively.

Theorem

1. If $Y+X Y^{-1} X$ is constant, then, all ϑ_{m} 's converge absolutely and uniformly on M.
2. If all ϑ_{m} 's converge absolutely and uniformly on $M,\left\{\vartheta_{m}\right\}_{m \in B_{B S}}$ is an orthogonal basis of the space of holomorphic sections of $L \rightarrow(M, \omega, J)$.

Non integrable case

When J is not integrable,

$$
0=\tilde{D} s \Longleftrightarrow 0=\left(\begin{array}{c}
\partial_{x_{1}} a_{m} \tag{1}\\
\vdots \\
\partial_{x_{n}} a_{m}
\end{array}\right)+2 \pi \sqrt{-1} a_{m} \Omega(m-x) \quad \forall m \in \mathbb{Z}^{n}
$$

has no solution. But, for each $m \in \mathbb{Z}^{n}$, the approxiamation

$$
0=\left(\begin{array}{c}
\partial_{x_{1}} a_{m} \tag{2}\\
\vdots \\
\partial_{x_{n}} a_{m}
\end{array}\right)+2 \pi \sqrt{-1} a_{m} \Omega(m)(m-x)
$$

has the following solution

$$
s_{m}^{\prime}(x, y):=e^{2 \pi \sqrt{ }-1 N\left\{\frac{1}{2}(x-m) \cdot \Omega(m)(x-m)+m \cdot y\right\}},
$$

where Ω is replaced by $\Omega(m)$, the value of Ω at m.

Definition

For $\forall m \in B_{B S}$, define $\vartheta_{m} \in \Gamma\left(\left(\mathbb{R}^{n} \times T^{n} \times \mathbb{C}\right)\right)^{\pi_{1}(B)} \cong \Gamma(L)$ by

$$
\vartheta_{m}(x, y):=\sum_{\gamma \in \pi_{1}(B)} \tilde{\tilde{\rho}}_{\gamma} \circ s_{m}^{\prime} \circ \tilde{\rho}_{\gamma-1}(x, y) .
$$

Non integrable continued

Proposition

1. ϑ_{m} converges absolutely and uniformly on M.
2. $\left\{\vartheta_{m}\right\}_{m \in B_{B S}}$ is an orthogonal family of the sections of L.

Thank you for your attention!

