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Purpose & Main Theorems



Geometric quantization

Geometric quantization - - - a procedure to construct a Hilbert space (and a
representation of (C>°(M), {, })) from the given symplectic manifold (M, w)
in the geometric way

Classical mechanics Quantum mechanics
M,w) —  Q(M,w) : Hilbert space
fe C=(M) —>  Q(f) : operator on Q(M,w)
Q satisfies Q({f, g}) = 2==" {Q(f)Q(g) — Q9)Q(f)}
Example (Canonical quantization)

(Rz",wo = dpi A dq,-> — Q(R*",wp) := L*(RY)

i=1

e

Qp) = 52
Q(a) = aqi
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pi, Qi € COO(R2n) — {



Kostant-Souriau theory

(M,w) closed symplectic manifold

n . def | L — M Hermitian line bundle
(L, V") prequantum line bundle &
v connection of L with ¥-"Fo1 = w

In the Kostant-Souriau theory, to obtain the quantum Hilbert space Q(M, w),
we need a polarization.

Definition
A polarization P is an integrable Lagrangian distribution of TM & C.

e Let S be the sheaf of germs of covariant constant sections of L along P.

When a polarization P is given, Q(M, w) is naively defined by
Definition

QM,w) := H'(M; S)
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Example (Kahler quantization)

(M,w,J) closed Kahler manifold

(L, h, V") holomorphic Hermitian line bundle with Chern connection
= T9%'M can be taken to be a polarization P.
Definition

Qxanter(M, w) := H(M; ;)

e When the Kodaira vanishing holds, dim Qkaner(M, w) = index of the
Dolbeault operator with coefficients in L.



Example (Real quantization)

m: fiber bundle
m: (M?",w) — B" Lagrangian fibration & { |per = 0
dim fiber = } dim M

Example

mo: (R x T"wo =Y dAdy) >R, m(x,y)=x

i=1

Theorem (Arnold-Liouville)
Any Lagrangian fibration with compact, path-connected fibers is locally
isomorphic to mo: (R" x T", wp) — R".

e We assume a fiber is compact and path-connected. = the fiber is T".
e B admits an integral affine structure (i.e., an atlas with integral affine
transition maps)



Example (Real quantization) continued

(L, V") — (M,w) 5 B Lagrangian fibration with prequantum line bundle
e (L,V")| ;-1 is aflat bundle for Vb € B.

Definition (Bohr-Sommerfeld (BS) point)

b € Bis Bohr-Sommerfeld & {s € [(L|,-1.,) | Vs = 0} # {0}

e BS points appear discretely.
e We denote by Bgs the set of BS points

Example (Local model)

n
(Rn x T"x C,d— ZW\/jZXid}’i> — (R" x T", wp) QRN Rgs =7"

i=1



Example (Real quantization) continued

(L, V') = (M,w) 5 B Lagrangian fibration with prequantum line bundle

=- The tangent bundle along the fiber T, M @ C can be taken to be a
polarization P.

Assume (M,w) is closed.
Theorem (Sniatycki)

Bbebgs 15 € T(Llz—1(5)) | Vis= 0} ifg= M
¢ if g : otherwise

HI(M; S) = {

Definition (Real quantization)

Qrea/(Myw) ‘= ObeBgg {S € F(L|,r71(b)) ‘ VLS = O}



Does Q(M,w) depend on a choice of polarization?

Question

OKéhler(Muw) = Orea/(M>W) z

e Several examples show it is true at least for dimension:

— the moment map . of a toric manifold (Danilov °78),
dim H*(M; O,) = #u(M) N ¢, = #BS pts

— the Gelfand-Cetlin system on the complex flag manifold
(Guillemin-Sternberg '83)

— the Goldman system on the moduli space of flat SU(2)-bundles
on a Riemann surface (Jeffrey-Weitsman ’92)



Qxanier = Qrear @s a limit of deformation of complex structures

Theorem (Baier-Florentino-Muorao-Nunes ’11)
When M is a toric manifold, they give one-parameter families of

o {J"}+~0 complex structures of M

o {0} }me uMne; bases of holomorphic sections of L — (M, JY

such that forvVm € u(M) N &, o, converges to a delta-function section
supported on =" (m) as t — oo in the following sense, for any section s of

L,
t n
im / <sf7’"> ‘%:/ (S, 6m), .
t=oo Jy lomll /o nt p=1(m)

e Similar results have been obtained (but only for non-singular fibers):
— the Gelfand-Cetlin system on the complex flag manifold
(Hamilton-Konno ’14)
— smooth irreducible complex algebraic variety with certain
assumptions (Hamilton-Harada-Kaveh ’16)



How about the non-Kahler case?

For a non-integrable J, we have several generalizations of the Kahler
quantization. Among these is the Spin® quantization.

Purpose
To generalize BFMN apporach to the Spin® quantization.

10



Spin° quantization — a generalization of the Kahler quantization

(L, V') = (M,w) closed symplectic manifold with prequantum line bundle
= By taking a compatible almost complex structure J, we can obtain the
Spin® Dirac operator
D: F(/\ (T*M)® ®L> ( ‘(T*M)O"®L).

e Dis a 1% order, formally self-adjoint, elliptic differential operator.
Definition (Spin° quantization)

Qspine (M, w) := ker(D| ro0,even) — ker(D| ro0,0a0) € K(pt) = Z

o dim Qspinc(M, w) = ind D depends only on w and does not depend on
the choice of J and V*.

e If (M,w,J) is Kéhler (hence, (L, V*) is holomorphic with Chern
connection), then D = v2(d ® L + 8* ® L) and

ind D = Z 1)%dim HY(M, O,).
Gt 11



Deformation of almost complex structure

m: (M,w) — B: Lagrangian fibration

J: compatible almost complex structure of (M, w)
= TM=JT.Ma& T-M (T-M: tangent bundle along the fiber of )
Definition
For each t > 0, define J' by

Sy o v ifveTM
v ifvedTom.

e J'is still a compatible almost complex structure of (M, w).

Assume J is invariant along the fiber of 7. Then,

J: integrable < J': integrable Vt > 0

As t — 400, T-M becomes smaller and JT. M becomes larger with

respect to g' := w(-,J""). (adiabatic-type limit)
. . 12
For each t > 0, we denote by D' the Dirac operator with respect to J'.



Main Theorem

(L, V') — (M,w) 5 B: Lagrangian fibration with prequantum line bundle

J: compatible almost complex structure of (M, w) invariant along the fiber of ©
{J"}1>0: the deformation of J defined as above

Theorem (Y ’19)

Assume M is closed and B is complete (i.e., B> R"). For the given data

and for each t > 0, we give orthogonal sections {795"}’776388 on L indexed by
Bgs such that

1. each ¥', converges to a delta-function section supported on =~'(m) as
t — oo in the following sense, for any section s of L,

,ﬂf wn
|im/<s77m>7:/ 5.6} (dy.
7o Jum WOl /p nt W71(m)< m). |dYy|

2. IirgoHDtﬂanLz = 0.

Moreover, if J is integrable, then, with a technical assumption, we can take
{9} mesgs to be an orthogonal basis of holomorphic sections of

t
L— (M,w,JY). .



Relation with Theta functions

Corollary
Whenm =p: M=T"xT"—-B=T",

Im(x,y) =€ (-Qx +y,9Q).

W\/j(fm-Qon-Qx)ﬁ |:m
0

14



Construction of ¥,




Key lemma 1

(L, V") — (M,w) 5 B Lagrangian fibration with prequantum line bundle
Key lemmat
If B is complete, then, the pull-back of (L, V') — (M,w) 5 B to B is
identified with
n
(L,vh) = <R" x T"x C,d —2rxv/—1 Zx,-dy,-) — (R" x T",wo) 3 R".
i=1

In paticular, (L, V") — (M,w) = B is obtained as the quotient of this
standard model by the 71 (B)-action.

15



Compatible almost complex structures

Let S, be the Siegel upper half space
Sn={Z=X+V-1Y e M(C) | X,Y € Mo(R),'Z=2,Y > 0}.

Lemma

C(R" x T",S,) <= {comp. almost cpx str. on (R" x T", wp)}
W w

XY' —y_Xxy'x
y—! —Y'X

Z=X+vV-AYt+—sJ:= <
e Jon (M,w) < m(B)-equiv. J on (R" x T, w)

Lemma

For any : (M,w) — B, there exists J of (M, w) s.t. the pull-back of J to
(R™ x T" wo) is invariant under the natural T"-action.

e We assume such a condition on J. = Z; € C*(R", S). 16



Dirac operator on (R” x T" wy)

Let
b:r </\' T"R"x T ® l) —T (/\'T*(R” x TN @ Z)

be the Spin® Dirac operator associated with a 71 (B)-equivariant J on

(R" x T" wp) correspondingto Z = X ++/—1Y.

Lemma

Fors =3 o am(x)e¥™ 1™ € T (R" x T" x C)),
Ox, @m

0=Ds < 0= : +27vV—-1apQ(m—x) VmeZ", (1)

Ox,am

where
Q:=(Y+XY'X)7'2y"' € C*(R", Sp).

17



Key lemma 2

Ox, @m

o
Il

+2rv—-1anQd(m—x) VmeZ". (1
Ox,8m

Key lemma2
The following conditions are equivalent:

e (1) has a non-trivial solution an, forvm € Z".
° 8X,ij :8XJ.Q,-kv/',j7k: 1,...7n

e J is integrable.

Moreover, in this case, the solution of (1) is

am(x) = am(0) exp {—277\/72/ ZQU(m] dX:‘ 1_"__)(,1_0} .

18



Integrable case

When J is integrable, for Vm € F N Z" = Bgg, define s, € T ((R” x T" x C))

by
Sm(X,y) = exp2mV —1 {—Z/ ZQ,,-(mj—xj)dx; 0+my}
i—1 Y0 j=1 Xp=-=Xj_1=
Definition
For Vm € Bgs, define ¥m € T (R" x T" x C))™®) =~ 1 (L) by

(X.y Z p'yoSmop'y_1(X .y)

vE™1(B)

where 3,  are the 71 (B)-actions on R” x T, R” x T" x C, respectively.
Theorem
1. If Y + XY~ X is constant, then, all ¥m’s converge absolutely and

uniformly on M.

2. IfallYvm’s converge absolutely and uniformly on M, {m}mesgg iS an
orthogonal basis of the space of holomorphic sections of L — (M,w,J). 19



Non integrable case

When J is not integrable,
Ox; @m
0=Ds «— 0= ; +2rvV—1anQ(m—-x) YmeZ" (1)
Ox,@m
has no solution. But, for each m € Z", the approxiamation
Ox; @m
0= : + 21V —1anQ(m)(m — x) (2)
Ox,@m
has the following solution
Sm(X, y) =
where Q is replaced by Q(m), the value of Q at m.

27r\/7N{ X—m)-Q(m)(x—m)+m-y }

Definition
For Vm € Bgs, define 9, € T (R" x T" x C))™® =~ (L) by

In(X,¥) = D Dy 08m0py1(X,y). 20
~Emi(B)



Non integrable continued

Proposition

1. ¥m converges absolutely and uniformly on M.

2. {Ym}mesys is an orthogonal family of the sections of L.

21



Thank you for your attention!
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