Stratifications on generic torus orbit closures

Hitoshi Yamanaka (OCAMI)
Toric Topology 2019, Okayama University of Science

Contents

1. Generic torus orbit closures (GTOCs) in T-varieties
2. The case of Schubert varieties of type A (Lee-Masuda's work)
3. Main results
4. Sketch of proof
5. Generic torus orbit closures (GTOCs) in T-varieties

- X : irreducible complex variety
- $T=\left(\mathbb{C}^{*}\right)^{r}(r \geq 1)$: algebraic torus of rank r
- T acts on X algebraically
- X^{T} : the set of T-fixed points in X.

We assume that $\left|X^{T}\right|<\infty$

Definition

The condition

$$
X^{T} \subset \overline{T \cdot x}
$$

is seemingly very extremal.
\longrightarrow Is this condition really a "generic condition" ?

Examples

- Consider the action $\mathbb{C}^{*} \curvearrowright \mathbb{C} P^{2}$ given by

$$
t \cdot\left[x_{0}: x_{1}: x_{2}\right]:=\left[x_{0}: t x_{1}: t^{2} x_{2}\right] .
$$

There is no T-generic point.

- Consider the action $\mathbb{C}^{*} \curvearrowright \mathbb{C}^{2}$ given by

$$
t \cdot(x, y):=\left(t x, t^{-1} y\right)
$$

The origin $(0,0)$ is a unique T-generic point.

Lemma (Y.)

Assume that X is T-equivariantly embedded to a T-variety \underline{X} satisfying the following conditions:

- \underline{X} has a T-invariant open covering $\left\{U_{p}\right\}_{p \in X^{T}}$ s.t. each U_{p} is T-isomorphic to some rational complex T-representation V_{p}.
- The weights $\alpha_{1}, \ldots, \alpha_{n}: T \rightarrow \mathbb{C}^{*}$ of V_{p} satisfy

$$
\left\langle\mathbf{v}, \alpha_{i}\right\rangle>0 \quad(i=1, \ldots, n)
$$

for some $\mathbf{v} \in \operatorname{Hom}\left(T, \mathbb{C}^{*}\right) \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{R}^{n}$.

- X is covered by $\left\{U_{p}\right\}_{p \in X^{T}}$.

Then the set of T-generic points of X is given by $\cap_{p \in X^{T}}\left(X \cap U_{p}\right)$. In particular T-generic points form a Zariski dense subset in X.

Remark

- A point $x \in X$ is called regular point if

$$
\operatorname{dim} T \cdot x=\max \{\operatorname{dim} T \cdot y \mid y \in X\}
$$

Regular points also form a non-empty Zariski open set.

- But "regular" and "T-generic" are not equivalent in general: Let

$$
X:=G L_{3}(\mathbb{C}) / B, \quad g:=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right], \quad x:=g B
$$

Then x is regular $(\because T \cdot x$ is a free orbit) but not T-generic.

Example

- G : complex reductive algebraic group
- B : Borel subgroup, B^{-}: opposite Borel subgroup
- W : Weyl group
- $X_{w}=\overline{B w B / B}, X^{u}=\overline{B^{-} u B / B}$: (opposite) Schubert variety
- $X_{w}^{u}:=X_{w} \cap X^{u}$: Richardson variety
$X=X_{w}^{u}$ satisfies the assumptions in above Lemma $(\underline{X}=G / B)$.
$\longrightarrow X_{w}^{u}$ has T-generic points.

Since $X_{w}=X_{w}^{i d}$, Schubert variety X_{w} has T-generic points.
2. The case of Schubert varieties of type A (Lee-Masuda's work)

In the rest of this talk we focus on Schubert variety X_{w} of type A. $\left(G=G L_{n}(\mathbb{C}), B=(\right.$ upper triangular Borel $\left.)\right)$

In the paper
Generic torus orbit closures in Schubert varieties, J. of Comb. Series. A, 2019,

Lee-Masuda investigate GTOCs Y_{w} in X_{w}.
Every torus orbit closure in $F /\left(\mathbb{C}^{n}\right)$ is normal by Carrell-Kurth, Thus Y_{w} is a normal toric variety. Y_{w} can be singular.

Lee-Masuda obtain:

- Explicit description of the fan of Y_{w}.
- Combinatorial criterion for the smoothness of Y_{w}
- Some interesting conjectures which indicate algebro-geometric similarity between X_{w} and Y_{w}.

Notation

Let $u, w \in \mathfrak{S}_{n}, u \leq w$ and $t_{u(i), u(j)} u$ be the transposition

$$
u=\cdots u(i) \cdots u(j) \cdots \Longrightarrow t_{u(i), u(j)} u=\cdots u(j) \cdots u(i) \cdots
$$

- Let $\widetilde{E}_{w}(u)$ be the set of pairs $(u(i), u(j))$ s.t.
(1) $1 \leq i<j \leq n$
(2) $t_{u(i), u(j)} u \leq w$
(3) $\left|\ell\left(t_{u(i), u(j)} u\right)-\ell(u)\right|=1$
- $(a, b) \in \widetilde{E}_{w}(u)$ is said to be indecomposable if there is no sequence

$$
\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{k}, b_{k}\right) \in \widetilde{E}_{w}(u)
$$

s.t. $k \geq 2, a=a_{1}, b_{1}=a_{2}, \ldots, b_{k-1}=a_{k}, b_{k}=b$.

- $E_{w}(u):=\left(\right.$ the set of indecomposables in $\left.\widetilde{E}_{w}(u)\right)$

Description of dual cones

Note that

$$
Y_{w}^{T}=X_{w}^{T}=\left\{u \in \mathfrak{S}_{n} \mid u \leq w\right\} .
$$

We denote by $C_{w}(u)$ the maximal cone corresponding to $u \in Y_{w}^{T}$.

Theorem (Lee-Masuda)

The set of primitive edge vectors of the dual cone

$$
D_{w}(u):=\left(C_{w}(u)\right)^{\vee}
$$

is given by

$$
\left\{\mathbf{e}_{b}-\mathbf{e}_{a} \mid(a, b) \in E_{w}(u)\right\}
$$

Remark

(1) GTOCs in X_{w} are mutually isomorphic as T-varieties (this justifies the notation " Y_{w} ").

This kind of "invariance" is also true for GTOCs in flag Bott manifolds (Lee-Suh's work. Explicit description of fans).
(2) Question:

Does the invariance also hold in the setting of Section 1 ?
If the invariance holds for X, it follows that every T-generic point in X is a regular point in X.
3. Main result

Theorem (Y., a conjecture of Lee-Masuda)
The Poincaré polynomial of Y_{w} is given by

$$
P_{t}\left(Y_{w}\right)=\sum_{u \in \mathfrak{S}_{n}, u \leq w} t^{a_{w}(u)}
$$

where

$$
a_{w}(u):=\left|\left\{(a, b) \in E_{w}(u) \mid a<b\right\}\right|
$$

4. Sketch of proof

Step 1: Local description of $\mathbf{Y}_{\mathbf{w}}$

Recall that $D_{w}(u)$ is the dual cone of the maximal cone $C_{w}(u)$ corresponding to $u \in Y_{w}^{T}$.

Key Lemma

The monoid $D_{w}(u) \cap \mathbb{Z}^{n}$ of lattice points in $D_{w}(u)$ is generated by primitive edge vectors.
\longrightarrow The affine variety
$Y_{w}(u):=\operatorname{Max}\left(\mathbb{C}\left[D_{w}(u) \cap \mathbb{Z}^{n}\right]\right) \quad\left(T\right.$-inv. open nbd around $\left.u \in Y_{w}\right)$
can be realized as an algebraic set in $\mathbb{C}^{E_{w}(u)}$.

Step 2: Defining equations

One can show that the defining equations of

$$
Y_{w}(u) \quad\left(\subset \mathbb{C}^{E_{w}(u)}\right)
$$

are given by

$$
\prod_{(a, b) \in L} x_{(a, b)}=\prod_{(a, b) \in R} x_{(a, b)}
$$

where

- $L, R \subset E_{w}(u)$
- $\sum_{(a, b) \in L}\left(\mathbf{e}_{b}-\mathbf{e}_{a}\right)=\sum_{(a, b) \in R}\left(\mathbf{e}_{b}-\mathbf{e}_{a}\right)$

Step 3: Computing BB-cell

Thanks to the defining equations, one can analyze the BB-cell $Y_{w}^{+}(u)$ with respect to the \mathbb{C}^{*}-action on $Y_{w}(u)$ induced from the regular cocharacter

$$
\mathbb{C}^{*} \rightarrow T, t \mapsto\left(t, t^{2}, \ldots, t^{n}\right):
$$

Theorem (Y.)

(1) $Y_{w}^{+}(u) \cong \mathbb{C}^{E_{w}^{く}(u)}$
(2) $\left\{Y_{w}^{+}(u)\right\}_{u \in Y_{w}^{T}}$ is an affine paving of Y_{w}.

Theorem in Section 3 follows from above theorem.

Summary

- Concept of a T-generic point in a T-variety:
(1) T-generic points form a Zariski dense subset under some mild conditions
(2) Question on uniqueness of T-isomorphic types of GTOCs in a T-variety
- GTOCs in the Schubert variety X_{w} of type A
(1) Lee-Masuda's conjecture on the Poincaré polynomials of GTOCs in X_{w}
(2) Paving theorem

Summary

- Concept of a T-generic point in a T-variety:
(1) T-generic points form a Zariski dense subset under some mild conditions
(2) Question on uniqueness of T-isomorphic types of GTOCs in a T-variety
- GTOCs in the Schubert variety X_{w} of type A
(1) Lee-Masuda's conjecture on the Poincaré polynomials of GTOCs in X_{w}
(2) Paving theorem

Thank you for your attention!

