Stratifications on generic torus orbit closures

Hitoshi Yamanaka (OCAMI)

Toric Topology 2019, Okayama University of Science

Contents

- 1. Generic torus orbit closures (GTOCs) in T-varieties
- 2. The case of Schubert varieties of type A (Lee-Masuda's work)
- 3. Main results
- 4. Sketch of proof

1. Generic torus orbit closures (GTOCs) in T-varieties

- X : irreducible complex variety
- $T = (\mathbb{C}^*)^r \ (r \geq 1)$: algebraic torus of rank r
- T acts on X algebraically
- X^T : the set of *T*-fixed points in X.
 We assume that |X^T| < ∞

Definition

A point $x \in X$ is called **T-generic point** if $X^T \subset \overline{T \cdot x}$

The condition

$$X^T \subset \overline{T \cdot x}$$

is seemingly very extremal.

 \longrightarrow Is this condition really a "generic condition" ?

Examples

• Consider the action $\mathbb{C}^* \curvearrowright \mathbb{C}P^2$ given by

$$t \cdot [x_0 : x_1 : x_2] := [x_0 : tx_1 : t^2x_2].$$

There is <u>no</u> *T*-generic point.

- Consider the action $\mathbb{C}^* \curvearrowright \mathbb{C}^2$ given by

$$t\cdot(x,y):=(tx,t^{-1}y).$$

The origin (0,0) is a unique *T*-generic point.

Lemma (Y.)

Assume that X is T-equivariantly embedded to a T-variety \underline{X} satisfying the following conditions:

- X has a T-invariant open covering {U_p}_{p∈X^T} s.t. each U_p is T-isomorphic to some rational complex T-representation V_p.
- The weights $\alpha_1, \ldots, \alpha_n : \mathcal{T} \to \mathbb{C}^*$ of V_p satisfy

$$\langle \mathbf{v}, \alpha_i \rangle > 0 \quad (i = 1, \dots, n)$$

for some $\mathbf{v} \in \text{Hom}(\mathcal{T}, \mathbb{C}^*) \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{R}^n$.

• X is covered by $\{U_p\}_{p \in X^T}$.

Then the set of *T*-generic points of *X* is given by $\bigcap_{p \in X^T} (X \cap U_p)$. In particular *T*-generic points form a Zariski dense subset in *X*.

Remark

• A point $x \in X$ is called **regular point** if

$$\dim T \cdot x = \max\{\dim T \cdot y | y \in X\}.$$

Regular points also form a non-empty Zariski open set.

 But "regular" and "*T*-generic" are not equivalent in general: Let

$$X := GL_3(\mathbb{C})/B, \quad g := \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \quad x := gB.$$

Then x is regular (: $T \cdot x$ is a free orbit) but not T-generic.

Example

- G : complex reductive algebraic group
- B : Borel subgroup, B^- : opposite Borel subgroup
- W : Weyl group

• $X_w = \overline{BwB/B}, X^u = \overline{B^- uB/B}$: (opposite) Schubert variety

• $X_w^u := X_w \cap X^u$: Richardson variety

 $X = X_w^u$ satisfies the assumptions in above Lemma ($\underline{X} = G/B$). $\longrightarrow X_w^u$ has *T*-generic points.

Since $X_w = X_w^{id}$, Schubert variety X_w has *T*-generic points.

2. The case of Schubert varieties of type A (Lee-Masuda's work)

In the rest of this talk we focus on Schubert variety X_w of type A. ($G = GL_n(\mathbb{C}), B = (upper triangular Borel)$)

In the paper

Generic torus orbit closures in Schubert varieties, J. of Comb. Series. A, 2019,

Lee-Masuda investigate GTOCs Y_w in X_w .

Every torus orbit closure in $Fl(\mathbb{C}^n)$ is normal by Carrell-Kurth, Thus Y_w is a <u>normal</u> toric variety. Y_w can be singular.

Lee-Masuda obtain:

- Explicit description of the fan of Y_w .
- Combinatorial criterion for the smoothness of Y_w
- Some interesting conjectures which indicate algebro-geometric similarity between X_w and Y_w .

Notation

Let $u, w \in \mathfrak{S}_n, u \leq w$ and $t_{u(i),u(j)}u$ be the transposition

$$u = \cdots u(i) \cdots u(j) \cdots \Longrightarrow t_{u(i),u(j)} u = \cdots u(j) \cdots u(i) \cdots$$

(a, b) ∈ E_w(u) is said to be indecomposable if there is no sequence

$$(a_1, b_1), (a_2, b_2), \ldots, (a_k, b_k) \in \widetilde{E}_w(u)$$

s.t. $k \ge 2, a = a_1, b_1 = a_2, \dots, b_{k-1} = a_k, b_k = b.$ • $E_w(u) := (\text{the set of indecomposables in } \widetilde{E}_w(u))$

Description of dual cones

Note that

$$Y_w^T = X_w^T = \{ u \in \mathfrak{S}_n | u \le w \}.$$

We denote by $C_w(u)$ the maximal cone corresponding to $u \in Y_w^T$.

Theorem (Lee-Masuda)

The set of primitive edge vectors of the dual cone

$$D_w(u) := (C_w(u))^{\vee}$$

is given by

$$\{\mathbf{e}_b-\mathbf{e}_a|(a,b)\in E_w(u)\}.$$

Remark

(1) GTOCs in X_w are mutually isomorphic as *T*-varieties (this justifies the notation " Y_w ").

This kind of "invariance" is also true for GTOCs in flag Bott manifolds (Lee-Suh's work. Explicit description of fans).

(2) Question:

Does the invariance also hold in the setting of Section 1 ?

If the invariance holds for X, it follows that every T-generic point in X is a regular point in X.

3. Main result

Theorem (Y., a conjecture of Lee-Masuda)

The Poincaré polynomial of Y_w is given by

$$P_t(Y_w) = \sum_{u \in \mathfrak{S}_n, u \leq w} t^{a_w(u)}$$

where

$$a_w(u) := |\{(a, b) \in E_w(u) | a < b\}|$$

æ

4. Sketch of proof

Step 1: Local description of Y_w

Recall that $D_w(u)$ is the dual cone of the maximal cone $C_w(u)$ corresponding to $u \in Y_w^T$.

Key Lemma

The monoid $D_w(u) \cap \mathbb{Z}^n$ of lattice points in $D_w(u)$ is generated by primitive edge vectors.

 \longrightarrow The affine variety

 $Y_w(u) := \mathsf{Max}(\mathbb{C}[D_w(u) \cap \mathbb{Z}^n])$ $(T\operatorname{-inv.} \text{ open nbd around } u \in Y_w)$

can be realized as an algebraic set in $\mathbb{C}^{E_w(u)}$.

Step 2: Defining equations

One can show that the defining equations of

$$Y_w(u) \quad (\subset \mathbb{C}^{E_w(u)})$$

are given by

$$\prod_{(a,b)\in L} x_{(a,b)} = \prod_{(a,b)\in R} x_{(a,b)}$$

where

•
$$L, R \subset E_w(u)$$

• $\sum_{(a,b)\in L} (\mathbf{e}_b - \mathbf{e}_a) = \sum_{(a,b)\in R} (\mathbf{e}_b - \mathbf{e}_a)$

Step 3: Computing BB-cell

Thanks to the defining equations, one can analyze the BB-cell $Y_w^+(u)$ with respect to the \mathbb{C}^* -action on $Y_w(u)$ induced from the regular cocharacter

$$\mathbb{C}^* o T, t \mapsto (t, t^2, \dots, t^n)$$
:

Theorem (Y.)

(1)
$$Y_w^+(u) \cong \mathbb{C}^{E_w^<(u)}$$

(2) $\{Y_w^+(u)\}_{u \in Y_w^T}$ is an affine paving of Y_w .

Theorem in Section 3 follows from above theorem.

Summary

- Concept of a *T*-generic point in a *T*-variety:
 - (1) *T*-generic points form a Zariski dense subset under some mild conditions
 - (2) Question on uniqueness of *T*-isomorphic types of GTOCs in a *T*-variety
- GTOCs in the Schubert variety X_w of type A
 - (1) Lee-Masuda's conjecture on the Poincaré polynomials of GTOCs in X_w
 - (2) Paving theorem

Summary

- Concept of a *T*-generic point in a *T*-variety:
 - (1) *T*-generic points form a Zariski dense subset under some mild conditions
 - (2) Question on uniqueness of *T*-isomorphic types of GTOCs in a *T*-variety
- GTOCs in the Schubert variety X_w of type A
 - (1) Lee-Masuda's conjecture on the Poincaré polynomials of GTOCs in X_w
 - (2) Paving theorem

Thank you for your attention !