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Let X be a complex projective algebraic variety having an action of
algebraic torus T = (C∗)n.

If the action of T extends to a linear action on the ambient projective space
PN , then we get a moment map µ : X ↪→ PN → Rn. Furthermore, for
each point x ∈ X, the image µ(Tx) is a rational convex polyhedron in Rn.

A point x ∈ X is generic (T-generic) if XT = TxT.

If dimCX = d and the action of T on X is effective, we call the number
d− n the complexity of the action.

In this talk, X is a Richardson variety in the flag manifold F`n and we
study the topology of X using the combinatorics of µ(Tx) for a generic
point x ∈ X when X has the torus action of complexity ≤ 1.
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Let B be the set of all upper triangular matrices in GLn(C). Then
GLn(C)/B is a flag manifold and denoted by F`n. i.e.,

F`n = {gB | g ∈ GLn(C)}.

Let Sn be the permutation group on {1, 2, ..., n}. For w ∈ Sn, we write

w = w(1)w(2) · · ·w(n) or w = [w(1), . . . , w(n)].

Set e = [1, 2, . . . , n] and w0 = [n, n− 1, . . . , 1].
Then for each w ∈ Sn, we get

w =

 | | |
ew(1) ew(2) · · · ew(n)

| | |

 ∈ GLn(C),

and wB is called a complete coordinate flag.
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Let T be the set of all diagonal matrices in GLn(C):

T =



∗ 0 · · · 0
0 ∗ · · · 0
...

...
. . .

...
0 0 · · · ∗

 ∈ GLn(C)

 ∼= (C∗)n.

Then T is a maximal torus in B and it acts on F`n:

t · gB := (tg)B for t ∈ T and g ∈ GLn(C).

The T-fixed point set of F`n is

(F`n)T = {wB | w ∈ Sn} .
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Using the Plücker embedding, we get a moment map

µ : F`n −→ Rn

such that µ(wB) = (w−1(1), w−1(2), · · · , w−1(n)), and hence the image
of µ is the permutohedron

Permn−1 := ConvHull{(w(1), . . . , w(n)) ∈ Rn | w ∈ Sn}.
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Note that the action of T on F`n is not effective, but F`n has a torus
action of complexity (n−1)(n−2)

2 .
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Let B− be the set of all lower triangular matrices in GLn(C). Then we
have

GLn(C) =
∐

w∈Sn

BwB =
∐

w∈Sn

B−wB.

Hence, we get

F`n =
∐

w∈Sn

BwB/B =
∐

w∈Sn

B−wB/B.

Note that

BwB/B ∼= C`(w) and B−wB/B ∼= C`(w0)−`(w),

where `(w) is the number of inversions of w, i.e.,

`(w) = #{(i, j) | 1 ≤ i < j ≤ n and w(i) > w(j)}.
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For each w ∈ Sn, the Schubert variety Xw and the opposite Schubert
variety Xw are defined as

Xw := BwB/B and Xw := B−wB/B,

respectively. Then

Xw =
∐
v≤w

BwB/B and Xw =
∐
v≥w

B−wB/B,

where v ≤ w if and only if (v(1), . . . , v(i))↑ ≤ (w(1), . . . , w(i))↑ for
1 ≤ ∀i ≤ n.∗ Then (Sn,≤) is a poset and the partial ordering ≤ is the
Bruhat order.

For v ≤ w in Sn, the Richardson variety Xv
w is defined as

Xv
w := Xw ∩Xv.

∗(v(1), . . . , v(i))↑ stands for “reordered to increasing order”.
Seonjeong Park (KAIST) November 20, 2019 8 / 23



Each Richardson variety Xv
w is a T-invariant irreducible subvariety of F`n

and
(Xv

w)
T = {uB | v ≤ u ≤ w}.

Recall that the moment map µ : F`n → Rn satisfies

µ(wB) = (w−1(1), w−1(2), · · · , w−1(n)).

Hence

µ(Xv
w) = ConvHull{(u−1(1), . . . , u−1(n)) | v ≤ u ≤ w}.

(e.g.) The moment map image of X1243
4132
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Note that for a point x ∈ Xv
w, since Tx ⊆ Xv

w, we have (Tx)T ⊆ (Xv
w)

T.
We say that a point x ∈ Xv

w is generic if (Tx)T = (Xv
w)

T.
We define

c(v, w) = dimCX
v
w − dimC Tx

= dimCX
v
w − dimR µ(X

v
w),

where x is a generic point of Xv
w.

Then c(v, w) is the complexity of the
effective torus action on Xv

w induced by the T-action.

Theorem [J. B. Carrell, 1991]

For every point x ∈ F`n, the closure of Tx is a normal toric variety.

A Richardson variety Xv
w is a toric variety if and only if c(v, w) = 0. In

this case, the Richardson variety Xv
w is the toric variety defined by the

polytope µ(Xv
w).
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Today

We are interested in the smooth Richardson varieties Xv
w with c(v, w) ≤ 1:

1 Xv
w with c(v, w) = 0, and

2 Xw with c(e, w) = 1.
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Schubert variety  
desingularize

Bott-Samelson variety ≈
diffeo.

Bott manifold

Xw Zw B

For w = si1 . . . sir , let Pik = BsikB. Then Zw be the quotient:

Zw := (Pi1 × · · · × Pir)/B
r,

with respect to the action of Br := B × · · · ×B︸ ︷︷ ︸
r

by

(p1, . . . , pr) · (b1, . . . , br) = (p1b1, b
−1
1 p2b2, . . . , b

−1
r−1prbr)

for (p1, . . . , pr) ∈
∏r

k=1 Pik and (b1, . . . , br) ∈ Br. Then Zw is a smooth
projective variety, but not a toric variety in general.
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A Bott tower is an iterated CP 1-bundle:

B2n = P (C⊕ ξn−1)
CP 1

−→ B2(n−1)
CP 1

−→ · · · CP
1

−→ B2 = CP 1 CP 1

−→ {a point},

where each B2k is the complex projectivization of the Whitney sum of a
complex line bundle ξk−1 over B2(k−1) and the trivial bundle C.
Each B2k is called a Bott manifold (of height k), and it is a projective
smooth toric variety.

Theorem [Fan (1998), Karuppuchamy (2013)]

The following are equivalent.

1 Xw is a toric variety.

2 Xw is a smooth toric variety.

3 Xw is a Bott-Samelson variety.

4 Xw is a Bott manifold.

5 c(e, w) = 0
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Recall that

(Xv
w)

T = {uB | v ≤ u ≤ w} and

µ(Xv
w) = ConvHull{(u−1(1), . . . , u−1(n)) | v ≤ u ≤ w}.

Bruhat interval
[v, w] := {z ∈ Sn | v ≤ z ≤ w}

Kodama and Williams (2013) define the Bruhat interval polytope

Qv,w := ConvHull{(z(1), . . . , z(n)) | v ≤ z ≤ w}

for v ≤ w in Sn.

Therefore µ(Xv
w) = Qv−1,w−1 .

We call Qv,w toric if the Richardson variety Xv−1

w−1 is a toric variety.
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Note that

[v, w] ∼= [v−1, w−1] (i.e., [x, y] ⊂ [v, w]⇔ [x−1, y−1] ⊂ [v−1, w−1])

Qv,w and Qv−1,w−1 are not combinatorially equivalent in general.

If n ≤ 4, then Qv,w
∼= Qv−1,w−1 for v ≤ w in Sn.

If n > 4, then there are many examples that Qv,w 6∼= Qv−1,w−1 .

Example

Note that 35412−1 = 45132, and `(35412) = 7.
The Bruhat interval polytopes Qe,35412 and Qe,45132 are 5-dim’l.
The face vectors of Qe,35412 and Qe,45132 are

f(Qe,35412) = (1, 60, 123, 82, 19, 1)

f(Qe,45132) = (1, 60, 122, 81, 19, 1).

Therefore, Qe,35412 and Qe,45132 are not combinatorially equivalent.
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Theorem [Lee-Masuda-Park]

1 dimRQv,w = dimRQv−1,w−1 and hence c(v, w) = c(v−1, w−1).

2 Qv,w is toric if and only if Qx,y is a face of Qv,w for every
[x, y] ⊆ [v, w].

3 Qv,w is smooth if and only if it is simple.

Therefore, Xv
w is a smooth projective toric variety if and only if

c(v, w) = 0 and µ(Xv
w) is a simple polytope.
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Examples: X1243
2431 and X1324

3421 are toric.

Every toric Schubert variety is smooth, but not every toric Richard-
son variety is.
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Proposition [Lee-Masuda-Park]

Assume Qv,w is toric. Then Qv,w is simple if and only if it is a cube.

Theorem [Lee-Masuda-Park]

The following are equivalent:

1 Xv
w is a smooth toric variety.

2 c(v, w) = 0 and [v, w] is Boolean.

3 Qv,w is a cube.

4 Xv
w is a Bott manifold.

A Richardson variety Xv
w is a Bott manifold if and only if it is toric

and [v, w] is Boolean.
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A simple transposition is a permutation of the form

si = [1, . . . , i− 1, i+ 1, i, i+ 2, . . . , n] (1 ≤ i ≤ n− 1).

Every w ∈ Sn can be expressed as a product of simple transpositions. A
minimal length expression of w is said to be reduced.

For w ∈ Sn, dimRQe,w is the number of distinct letters appearing in a
reduced expression of w.

For example,

1 321 = s1s2s1 = s2s1s2 and hence c(e, 321) = 3− 2 = 1

2 3412 = s2s3s1s2 = s2s1s3s2 and hence c(e, 3412) = 4− 3 = 1.
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Let w ∈ Sn and p ∈ Sk for k ≤ n.The permutation w contains the
pattern p if there exist i1 < · · · < ik such that w(i1) · · ·w(ik) is in the
same relative order as p(1) · · · p(k). If w does not contains p, then w
avoids p, or is p-avoiding.
Let [321; 3412](w) be the number of distinct 321-and 3412-patterns in a
permutation w.

Using the result of [Tenner(2012)], we get the following.

Let w ∈ Sn. Then

1 c(e, w) = 0 if and only if [321; 3412](w) = 0.

2 c(e, w) = 1 if and only if [321; 3412](w) = 1.

Theorem [Lakshmibai and Sandhya (1990)]

For a permutation w ∈ Sn, the Schubert variety Xw is smooth if and only
if w avoids the patterns 3412 and 4231.
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A Schubert variety Xw is smooth and has complexity one if and only if w
avoids 3412 and contains the patter 321 exactly once.

(e.g.) The permutations 321, 4132, 4213, 2431, and 3241 give smooth
Schubert varieties of complexity 1.

Using the result of Tenner (2012), we get the following:

If a permutation w avoids every pattern in the set {3412, 4231, 4321},
then the Schubert variety Xw is smooth and the complexity of Xw is the
number of distinct 321-patterns in w.
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Proposition [Lee-Masuda-Park]

Let w be a permutation in Sn containing exactly one 321 pattern and
avoiding 3412. Then

1 the Bruhat interval [e, w] is isomorphic to a poset S3 ×B`−3, where
` = `(w) and B`−3 is the Boolean poset of length (`− 3), and

2 the Bruhat interval polytope Qv,w is combinatorially equivalent to the
polytope Perm2 × I`−3, where Perm2 is the two-dimensional
permutohedron (i.e., hexagon).
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Theorem [Lee-Fujita-Suh]

Schubert variety  
desingularize

flag Bott-Samelson variety ≈
diffeo.

flag Bott manifold

Xw ZI B

Theorem [Lee-Masuda-Park]

For x ∈ Sn, if w avoids 3412 and has the pattern 321 exactly once, then
Xw is isomorphic to a flag Bott-Samelson variety, and hence it is
diffeomorphic to a flag Bott manifold.

It follows from the fact that w avoids 3412 and has the pattern 321
exactly once if and only if there exists a reduced expression of w
containing sisi+1si as a factor and no other repetitions. See [Daly(2013)].
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Thank you very much!
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