Generic torus orbit closures in Richardson varieties

Seonjeong Park

KAIST
Toric Topology 2019 in Okayama
November 20, 2019
Okayama University of Science, Japan

Based on joint work with Eunjeong Lee (IBS-CGP) and Mikiya Masuda (OCU)

Let X be a complex projective algebraic variety having an action of algebraic torus $\mathbb{T}=\left(\mathbb{C}^{*}\right)^{n}$.

If the action of \mathbb{T} extends to a linear action on the ambient projective space \mathbb{P}^{N}, then we get a moment map $\mu: X \hookrightarrow \mathbb{P}^{N} \rightarrow \mathbb{R}^{n}$. Furthermore, for each point $x \in X$, the image $\mu(\overline{\mathbb{T} x})$ is a rational convex polyhedron in \mathbb{R}^{n}.

A point $x \in X$ is generic (\mathbb{T}-generic) if $X^{\mathbb{T}}=\overline{\mathbb{T}}^{\mathbb{T}}$.
If $\operatorname{dim}_{\mathbb{C}} X=d$ and the action of \mathbb{T} on X is effective, we call the number $d-n$ the complexity of the action.

In this talk, X is a Richardson variety in the flag manifold $\mathcal{F} \ell_{n}$ and we study the topology of X using the combinatorics of $\mu(\overline{\mathbb{T}})$ for a generic point $x \in X$ when X has the torus action of complexity ≤ 1.
(1) Flag manifold, Schubert variety, Richardson variety
(2) Schubert varieties with complexity 0
(3) Richardson varieties with complexity 0
(4) Schubert varieties with complexity 1
(1) Flag manifold, Schubert variety, Richardson variety
(2) Schubert varieties with complexity 0
(3) Richardson varieties with complexity 0
(4) Schubert varieties with complexity 1

Let B be the set of all upper triangular matrices in $\mathrm{GL}_{n}(\mathbb{C})$. Then $\mathrm{GL}_{n}(\mathbb{C}) / B$ is a flag manifold and denoted by $\mathcal{F} \ell_{n}$. i.e.,

$$
\mathcal{F} \ell_{n}=\left\{g B \mid g \in \mathrm{GL}_{n}(\mathbb{C})\right\}
$$

Let \mathfrak{S}_{n} be the permutation group on $\{1,2, \ldots, n\}$. For $w \in \mathfrak{S}_{n}$, we write

$$
w=w(1) w(2) \cdots w(n) \text { or } w=[w(1), \ldots, w(n)] .
$$

Set $e=[1,2, \ldots, n]$ and $w_{0}=[n, n-1, \ldots, 1]$.
Then for each $w \in \mathfrak{S}_{n}$, we get

$$
w=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{e}_{w(1)} & \mathbf{e}_{w(2)} & \cdots & \mathbf{e}_{w(n)} \\
\mid & \mid & & \mid
\end{array}\right] \in \operatorname{GL}_{n}(\mathbb{C})
$$

and $w B$ is called a complete coordinate flag.

Let \mathbb{T} be the set of all diagonal matrices in $\mathrm{GL}_{n}(\mathbb{C})$:

$$
\mathbb{T}=\left\{\left[\begin{array}{cccc}
* & 0 & \cdots & 0 \\
0 & * & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & *
\end{array}\right] \in \mathrm{GL}_{n}(\mathbb{C})\right\} \cong\left(\mathbb{C}^{*}\right)^{n}
$$

Then \mathbb{T} is a maximal torus in B and it acts on $\mathcal{F} \ell_{n}$:

$$
t \cdot g B:=(t g) B \text { for } t \in \mathbb{T} \text { and } g \in \mathrm{GL}_{n}(\mathbb{C})
$$

The \mathbb{T}-fixed point set of $\mathcal{F} \ell_{n}$ is

$$
\left(\mathcal{F} \ell_{n}\right)^{\mathbb{T}}=\left\{w B \mid w \in \mathfrak{S}_{n}\right\}
$$

Using the Plücker embedding, we get a moment map

$$
\mu: \mathcal{F} \ell_{n} \longrightarrow \mathbb{R}^{n}
$$

such that $\mu(w B)=\left(w^{-1}(1), w^{-1}(2), \cdots, w^{-1}(n)\right)$, and hence the image of μ is the permutohedron

$$
\operatorname{Perm}_{n-1}:=\operatorname{ConvHull}\left\{(w(1), \ldots, w(n)) \in \mathbb{R}^{n} \mid w \in \mathfrak{S}_{n}\right\}
$$

Note that the action of \mathbb{T} on $\mathcal{F} \ell_{n}$ is not effective, but $\mathcal{F} \ell_{n}$ has a torus action of complexity $\frac{(n-1)(n-2)}{2}$.

Using the Plücker embedding, we get a moment map

$$
\mu: \mathcal{F} \ell_{n} \longrightarrow \mathbb{R}^{n}
$$

such that $\mu(w B)=\left(w^{-1}(1), w^{-1}(2), \cdots, w^{-1}(n)\right)$, and hence the image of μ is the permutohedron

$$
\operatorname{Perm}_{n-1}:=\operatorname{ConvHull}\left\{(w(1), \ldots, w(n)) \in \mathbb{R}^{n} \mid w \in \mathfrak{S}_{n}\right\}
$$

Note that the action of \mathbb{T} on $\mathcal{F} \ell_{n}$ is not effective, but $\mathcal{F} \ell_{n}$ has a torus action of complexity $\frac{(n-1)(n-2)}{2}$.

Let B^{-}be the set of all lower triangular matrices in $\mathrm{GL}_{n}(\mathbb{C})$. Then we have

$$
\mathrm{GL}_{n}(\mathbb{C})=\coprod_{w \in \mathfrak{S}_{n}} B w B=\coprod_{w \in \mathfrak{G}_{n}} B^{-} w B
$$

Hence, we get

$$
\mathcal{F} \ell_{n}=\coprod_{w \in \mathfrak{S}_{n}} B w B / B=\coprod_{w \in \mathfrak{S}_{n}} B^{-} w B / B .
$$

Note that

$$
B w B / B \cong \mathbb{C}^{\ell(w)} \text { and } B^{-} w B / B \cong \mathbb{C}^{\ell\left(w_{0}\right)-\ell(w)},
$$

where $\ell(w)$ is the number of inversions of w, i.e.,

$$
\ell(w)=\#\{(i, j) \mid 1 \leq i<j \leq n \text { and } w(i)>w(j)\} .
$$

For each $w \in \mathfrak{S}_{n}$, the Schubert variety X_{w} and the opposite Schubert variety X^{w} are defined as

$$
X_{w}:=\overline{B w B / B} \quad \text { and } \quad X^{w}:=\overline{B^{-} w B / B}
$$

respectively. Then

$$
X_{w}=\coprod_{v \leq w} B w B / B \quad \text { and } \quad X^{w}=\coprod_{v \geq w} B^{-} w B / B
$$

where $v \leq w$ if and only if $(v(1), \ldots, v(i)) \uparrow \leq(w(1), \ldots, w(i)) \uparrow$ for $1 \leq \forall i \leq n .^{*}$ Then $\left(\mathfrak{S}_{n}, \leq\right)$ is a poset and the partial ordering \leq is the Bruhat order.

For $v \leq w$ in \mathfrak{S}_{n}, the Richardson variety X_{w}^{v} is defined as

$$
X_{w}^{v}:=X_{w} \cap X^{v}
$$

* $(v(1), \ldots, v(i)) \uparrow$ stands for "reordered to increasing order".

Each Richardson variety X_{w}^{v} is a \mathbb{T}-invariant irreducible subvariety of $\mathcal{F} \ell_{n}$ and

$$
\left(X_{w}^{v}\right)^{\mathbb{T}}=\{u B \mid v \leq u \leq w\} .
$$

Recall that the moment map $\mu: \mathcal{F} \ell_{n} \rightarrow \mathbb{R}^{n}$ satisfies

$$
\mu(w B)=\left(w^{-1}(1), w^{-1}(2), \cdots, w^{-1}(n)\right)
$$

Hence

$$
\mu\left(X_{w}^{v}\right)=\operatorname{ConvHull}\left\{\left(u^{-1}(1), \ldots, u^{-1}(n)\right) \mid v \leq u \leq w\right\}
$$

(e.g.) The moment map image of X_{4132}^{1243}

Note that for a point $x \in X_{w}^{v}$, since $\overline{\mathbb{T} x} \subseteq X_{w}^{v}$, we have $(\overline{\mathbb{T} x})^{\mathbb{T}} \subseteq\left(X_{w}^{v}\right)^{\mathbb{T}}$. We say that a point $x \in X_{w}^{v}$ is generic if $(\mathbb{T} x)^{\mathbb{T}}=\left(X_{w}^{v}\right)^{\mathbb{T}}$. We define

$$
\begin{aligned}
c(v, w) & =\operatorname{dim}_{\mathbb{C}} X_{w}^{v}-\operatorname{dim}_{\mathbb{C}} \overline{\mathbb{T} x} \\
& =\operatorname{dim}_{\mathbb{C}} X_{w}^{v}-\operatorname{dim}_{\mathbb{R}} \mu\left(X_{w}^{v}\right),
\end{aligned}
$$

where x is a generic point of X_{w}^{v}.

Note that for a point $x \in X_{w}^{v}$, since $\overline{\mathbb{T} x} \subseteq X_{w}^{v}$, we have $(\overline{\mathbb{T} x})^{\mathbb{T}} \subseteq\left(X_{w}^{v}\right)^{\mathbb{T}}$. We say that a point $x \in X_{w}^{v}$ is generic if $(\overline{\mathbb{T} x})^{\mathbb{T}}=\left(X_{w}^{v}\right)^{\mathbb{T}}$. We define

$$
\begin{aligned}
c(v, w) & =\operatorname{dim}_{\mathbb{C}} X_{w}^{v}-\operatorname{dim}_{\mathbb{C}} \overline{\mathbb{T} x} \\
& =\operatorname{dim}_{\mathbb{C}} X_{w}^{v}-\operatorname{dim}_{\mathbb{R}} \mu\left(X_{w}^{v}\right),
\end{aligned}
$$

where x is a generic point of X_{w}^{v}. Then $c(v, w)$ is the complexity of the effective torus action on X_{w}^{v} induced by the \mathbb{T}-action.

Note that for a point $x \in X_{w}^{v}$, since $\overline{\mathbb{T} x} \subseteq X_{w}^{v}$, we have $(\overline{\mathbb{T} x})^{\mathbb{T}} \subseteq\left(X_{w}^{v}\right)^{\mathbb{T}}$. We say that a point $x \in X_{w}^{v}$ is generic if $(\overline{\mathbb{T} x})^{\mathbb{T}}=\left(X_{w}^{v}\right)^{\mathbb{T}}$. We define

$$
\begin{aligned}
c(v, w) & =\operatorname{dim}_{\mathbb{C}} X_{w}^{v}-\operatorname{dim}_{\mathbb{C}} \overline{\mathbb{T} x} \\
& =\operatorname{dim}_{\mathbb{C}} X_{w}^{v}-\operatorname{dim}_{\mathbb{R}} \mu\left(X_{w}^{v}\right),
\end{aligned}
$$

where x is a generic point of X_{w}^{v}. Then $c(v, w)$ is the complexity of the effective torus action on X_{w}^{v} induced by the \mathbb{T}-action.

Theorem [J. B. Carrell, 1991]
For every point $x \in \mathcal{F} \ell_{n}$, the closure of $\mathbb{T} x$ is a normal toric variety.

Note that for a point $x \in X_{w}^{v}$, since $\overline{\mathbb{T} x} \subseteq X_{w}^{v}$, we have $(\overline{\mathbb{T} x})^{\mathbb{T}} \subseteq\left(X_{w}^{v}\right)^{\mathbb{T}}$. We say that a point $x \in X_{w}^{v}$ is generic if $(\overline{\mathbb{T} x})^{\mathbb{T}}=\left(X_{w}^{v}\right)^{\mathbb{T}}$. We define

$$
\begin{aligned}
c(v, w) & =\operatorname{dim}_{\mathbb{C}} X_{w}^{v}-\operatorname{dim}_{\mathbb{C}} \overline{\mathbb{T} x} \\
& =\operatorname{dim}_{\mathbb{C}} X_{w}^{v}-\operatorname{dim}_{\mathbb{R}} \mu\left(X_{w}^{v}\right),
\end{aligned}
$$

where x is a generic point of X_{w}^{v}. Then $c(v, w)$ is the complexity of the effective torus action on X_{w}^{v} induced by the \mathbb{T}-action.

Theorem [J. B. Carrell, 1991]

For every point $x \in \mathcal{F} \ell_{n}$, the closure of $\mathbb{T} x$ is a normal toric variety.
A Richardson variety X_{w}^{v} is a toric variety if and only if $c(v, w)=0$. In this case, the Richardson variety X_{w}^{v} is the toric variety defined by the polytope $\mu\left(X_{w}^{v}\right)$.

Note that for a point $x \in X_{w}^{v}$, since $\overline{\mathbb{T} x} \subseteq X_{w}^{v}$, we have $(\overline{\mathbb{T} x})^{\mathbb{T}} \subseteq\left(X_{w}^{v}\right)^{\mathbb{T}}$. We say that a point $x \in X_{w}^{v}$ is generic if $(\overline{\mathbb{T} x})^{\mathbb{T}}=\left(X_{w}^{v}\right)^{\mathbb{T}}$. We define

$$
\begin{aligned}
c(v, w) & =\operatorname{dim}_{\mathbb{C}} X_{w}^{v}-\operatorname{dim}_{\mathbb{C}} \overline{\mathbb{T} x} \\
& =\operatorname{dim}_{\mathbb{C}} X_{w}^{v}-\operatorname{dim}_{\mathbb{R}} \mu\left(X_{w}^{v}\right),
\end{aligned}
$$

where x is a generic point of X_{w}^{v}. Then $c(v, w)$ is the complexity of the effective torus action on X_{w}^{v} induced by the \mathbb{T}-action.

Theorem [J. B. Carrell, 1991]

For every point $x \in \mathcal{F} \ell_{n}$, the closure of $\mathbb{T} x$ is a normal toric variety.
A Richardson variety X_{w}^{v} is a toric variety if and only if $c(v, w)=0$. In this case, the Richardson variety X_{w}^{v} is the toric variety defined by the polytope $\mu\left(X_{w}^{v}\right)$.

Today
We are interested in the smooth Richardson varieties X_{w}^{v} with $c(v, w) \leq 1$:
(1) X_{w}^{v} with $c(v, w)=0$, and
(2) X_{w} with $c(e, w)=1$.
(1) Flag manifold, Schubert variety, Richardson variety
(2) Schubert varieties with complexity 0

(3) Richardson varieties with complexity 0

(4) Schubert varieties with complexity 1

Schubert variety $\xrightarrow{\text { desingularize }}$ X_{w}

Bott-Samelson variety $\underset{\text { diffeo. }}{\approx}$
$Z_{\underline{w}}$

For $w=s_{i_{1}} \ldots s_{i_{r}}$, let $P_{i_{k}}=\overline{B s_{i_{k}} B}$. Then $Z_{\underline{w}}$ be the quotient:

$$
Z_{\underline{w}}:=\left(P_{i_{1}} \times \cdots \times P_{i_{r}}\right) / B^{r},
$$

with respect to the action of $B^{r}:=\underbrace{B \times \cdots \times B}_{r}$ by

$$
\left(p_{1}, \ldots, p_{r}\right) \cdot\left(b_{1}, \ldots, b_{r}\right)=\left(p_{1} b_{1}, b_{1}^{-1} p_{2} b_{2}, \ldots, b_{r-1}^{-1} p_{r} b_{r}\right)
$$

for $\left(p_{1}, \ldots, p_{r}\right) \in \prod_{k=1}^{r} P_{i_{k}}$ and $\left(b_{1}, \ldots, b_{r}\right) \in B^{r}$. Then $Z_{\underline{w}}$ is a smooth projective variety, but not a toric variety in general.

A Bott tower is an iterated $\mathbb{C} P^{1}$-bundle:

$$
B_{2 n}=P\left(\underline{\mathbb{C}} \oplus \xi_{n-1}\right) \xrightarrow{\mathbb{C} P^{1}} B_{2(n-1)} \xrightarrow{\mathbb{C} P^{1}} \cdots \xrightarrow{\mathbb{C} P^{1}} B_{2}=\mathbb{C} P^{1} \xrightarrow{\mathbb{C} P^{1}}\{\text { a point }\},
$$

where each $B_{2 k}$ is the complex projectivization of the Whitney sum of a complex line bundle ξ_{k-1} over $B_{2(k-1)}$ and the trivial bundle \mathbb{C}. Each $B_{2 k}$ is called a Bott manifold (of height k), and it is a projective smooth toric variety.

Theorem [Fan (1998), Karuppuchamy (2013)]
The following are equivalent.
(1) X_{w} is a toric variety.
(2) X_{w} is a smooth toric variety.
(3) X_{w} is a Bott-Samelson variety.
(9) X_{w} is a Bott manifold.

A Bott tower is an iterated $\mathbb{C} P^{1}$-bundle:

$$
B_{2 n}=P\left(\underline{\mathbb{C}} \oplus \xi_{n-1}\right) \xrightarrow{\mathbb{C} P^{1}} B_{2(n-1)} \xrightarrow{\mathbb{C} P^{1}} \cdots \xrightarrow{\mathbb{C} P^{1}} B_{2}=\mathbb{C} P^{1} \xrightarrow{\mathbb{C} P^{1}}\{\text { a point }\},
$$

where each $B_{2 k}$ is the complex projectivization of the Whitney sum of a complex line bundle ξ_{k-1} over $B_{2(k-1)}$ and the trivial bundle \mathbb{C}. Each $B_{2 k}$ is called a Bott manifold (of height k), and it is a projective smooth toric variety.

Theorem [Fan (1998), Karuppuchamy (2013)]

The following are equivalent.
(1) X_{w} is a toric variety.
(2) X_{w} is a smooth toric variety.
(3) X_{w} is a Bott-Samelson variety.
(9) X_{w} is a Bott manifold.
(3) $c(e, w)=0$

A Bott tower is an iterated $\mathbb{C} P^{1}$-bundle:

$$
B_{2 n}=P\left(\underline{\mathbb{C}} \oplus \xi_{n-1}\right) \xrightarrow{\mathbb{C} P^{1}} B_{2(n-1)} \xrightarrow{\mathbb{C} P^{1}} \cdots \xrightarrow{\mathbb{C} P^{1}} B_{2}=\mathbb{C} P^{1} \xrightarrow{\mathbb{C} P^{1}}\{\text { a point }\},
$$

where each $B_{2 k}$ is the complex projectivization of the Whitney sum of a complex line bundle ξ_{k-1} over $B_{2(k-1)}$ and the trivial bundle \mathbb{C}. Each $B_{2 k}$ is called a Bott manifold (of height k), and it is a projective smooth toric variety.

Theorem [Fan (1998), Karuppuchamy (2013)]

The following are equivalent.
(1) X_{w} is a toric variety.
(2) X_{w} is a smooth toric variety.
(3) X_{w} is a Bott-Samelson variety.
(9) X_{w} is a Bott manifold.
(3) $c(e, w)=0$
(1) Flag manifold, Schubert variety, Richardson variety
(2) Schubert varieties with complexity 0
(3) Richardson varieties with complexity 0
(4) Schubert varieties with complexity 1

Recall that

- $\left(X_{w}^{v}\right)^{\mathbb{T}}=\{u B \mid v \leq u \leq w\}$ and
- $\mu\left(X_{w}^{v}\right)=\operatorname{ConvHull}\left\{\left(u^{-1}(1), \ldots, u^{-1}(n)\right) \mid v \leq u \leq w\right\}$.

Bruhat interval

$$
[v, w]:=\left\{z \in \mathfrak{S}_{n} \mid v \leq z \leq w\right\}
$$

Kodama and Williams (2013) define the Bruhat interval polytope

$$
Q_{v, w}:=\operatorname{ConvHull}\{(z(1), \ldots, z(n)) \mid v \leq z \leq w\}
$$

for $v \leq w$ in \mathfrak{S}_{n}.
Therefore $\mu\left(X_{w}^{v}\right)=Q_{v^{-1}, w^{-1}}$.

We call $Q_{v, w}$ toric if the Richardson variety $X_{w^{-1}}^{v^{-1}}$ is a toric variety.

Note that

- $[v, w] \cong\left[v^{-1}, w^{-1}\right] \quad$ (i.e., $\left.[x, y] \subset[v, w] \Leftrightarrow\left[x^{-1}, y^{-1}\right] \subset\left[v^{-1}, w^{-1}\right]\right)$
- $Q_{v, w}$ and $Q_{v^{-1}, w^{-1}}$ are not combinatorially equivalent in general.
- If $n \leq 4$, then $Q_{v, w} \cong Q_{v^{-1}, w^{-1}}$ for $v \leq w$ in \mathfrak{S}_{n}.
- If $n>4$, then there are many examples that $Q_{v, w} \neq Q_{v^{-1}, w^{-1}}$.

Example

Note that $35412^{-1}=45132$, and $\ell(35412)=7$.
The Bruhat interval polytopes $Q_{e, 35412}$ and $Q_{e, 45132}$ are 5-dim'l.
The face vectors of $Q_{e, 35412}$ and $Q_{e, 45132}$ are

$$
\begin{aligned}
& f\left(Q_{e, 35412}\right)=(1,60,123,82,19,1) \\
& f\left(Q_{e, 45132}\right)=(1,60,122,81,19,1) .
\end{aligned}
$$

Therefore, $Q_{e, 35412}$ and $Q_{e, 45132}$ are not combinatorially equivalent.

Theorem [Lee-Masuda-Park]

(1) $\operatorname{dim}_{\mathbb{R}} Q_{v, w}=\operatorname{dim}_{\mathbb{R}} Q_{v^{-1}, w^{-1}}$ and hence $c(v, w)=c\left(v^{-1}, w^{-1}\right)$.
(2) $Q_{v, w}$ is toric if and only if $Q_{x, y}$ is a face of $Q_{v, w}$ for every $[x, y] \subseteq[v, w]$.
(3) $Q_{v, w}$ is smooth if and only if it is simple.

Therefore, X_{w}^{v} is a smooth projective toric variety if and only if $c(v, w)=0$ and $\mu\left(X_{w}^{v}\right)$ is a simple polytope.

Examples: X_{2431}^{1243} and X_{3421}^{1324} are toric.

Every toric Schubert variety is smooth, but not every toric Richardson variety is.

Proposition [Lee-Masuda-Park]

Assume $Q_{v, w}$ is toric. Then $Q_{v, w}$ is simple if and only if it is a cube.

Theorem [Lee-Masuda-Park]

The following are equivalent:
(1) X_{w}^{v} is a smooth toric variety.
(2) $c(v, w)=0$ and $[v, w]$ is Boolean.
(3) $Q_{v, w}$ is a cube.
(9) X_{w}^{v} is a Bott manifold.

A Richardson variety X_{w}^{v} is a Bott manifold if and only if it is toric and $[v, w]$ is Boolean.
(1) Flag manifold, Schubert variety, Richardson variety
(2) Schubert varieties with complexity 0
(3) Richardson varieties with complexity 0
(4) Schubert varieties with complexity 1

A simple transposition is a permutation of the form

$$
s_{i}=[1, \ldots, i-1, i+1, i, i+2, \ldots, n] \quad(1 \leq i \leq n-1) .
$$

Every $w \in \mathfrak{S}_{n}$ can be expressed as a product of simple transpositions. A minimal length expression of w is said to be reduced.

For $w \in \mathfrak{S}_{n}, \operatorname{dim}_{\mathbb{R}} Q_{e, w}$ is the number of distinct letters appearing in a reduced expression of w.

For example,
(1) $321=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}$ and hence $c(e, 321)=3-2=1$
(2) $3412=s_{2} s_{3} s_{1} s_{2}=s_{2} s_{1} s_{3} s_{2}$ and hence $c(e, 3412)=4-3=1$.

A simple transposition is a permutation of the form

$$
s_{i}=[1, \ldots, i-1, i+1, i, i+2, \ldots, n] \quad(1 \leq i \leq n-1) .
$$

Every $w \in \mathfrak{S}_{n}$ can be expressed as a product of simple transpositions. A minimal length expression of w is said to be reduced.

For $w \in \mathfrak{S}_{n}, \operatorname{dim}_{\mathbb{R}} Q_{e, w}$ is the number of distinct letters appearing in a reduced expression of w.

For example,
(1) $321=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}$ and hence $c(e, 321)=3-2=1$
(2) $3412=s_{2} s_{3} s_{1} s_{2}=s_{2} s_{1} s_{3} s_{2}$ and hence $c(e, 3412)=4-3=1$.

Let $w \in \mathfrak{S}_{n}$ and $p \in \mathfrak{S}_{k}$ for $k \leq n$. The permutation w contains the pattern p if there exist $i_{1}<\cdots<i_{k}$ such that $w\left(i_{1}\right) \cdots w\left(i_{k}\right)$ is in the same relative order as $p(1) \cdots p(k)$. If w does not contains p, then w avoids p, or is p-avoiding.

Let $w \in \mathfrak{S}_{n}$ and $p \in \mathfrak{S}_{k}$ for $k \leq n$. The permutation w contains the pattern p if there exist $i_{1}<\cdots<i_{k}$ such that $w\left(i_{1}\right) \cdots w\left(i_{k}\right)$ is in the same relative order as $p(1) \cdots p(k)$. If w does not contains p, then w avoids p, or is p-avoiding.
Let $[321 ; 3412](w)$ be the number of distinct 321 -and 3412-patterns in a permutation w. Using the result of [Tenner(2012)], we get the following.

Let $w \in \mathfrak{S}_{n}$. Then
(1) $c(e, w)=0$ if and only if $[321 ; 3412](w)=0$.
(2) $c(e, w)=1$ if and only if $[321 ; 3412](w)=1$.

Let $w \in \mathfrak{S}_{n}$ and $p \in \mathfrak{S}_{k}$ for $k \leq n$. The permutation w contains the pattern p if there exist $i_{1}<\cdots<i_{k}$ such that $w\left(i_{1}\right) \cdots w\left(i_{k}\right)$ is in the same relative order as $p(1) \cdots p(k)$. If w does not contains p, then w avoids p, or is p-avoiding.
Let $[321 ; 3412](w)$ be the number of distinct 321 -and 3412-patterns in a permutation w. Using the result of [Tenner(2012)], we get the following.

Let $w \in \mathfrak{S}_{n}$. Then
(1) $c(e, w)=0$ if and only if $[321 ; 3412](w)=0$.
(2) $c(e, w)=1$ if and only if $[321 ; 3412](w)=1$.

> Theorem [Lakshmibai and Sandhya (1990)]
> For a permutation $w \in \mathfrak{S}_{n}$, the Schubert variety X_{w} is smooth if and only if w avoids the patterns 3412 and 4231 .

Let $w \in \mathfrak{S}_{n}$ and $p \in \mathfrak{S}_{k}$ for $k \leq n$. The permutation w contains the pattern p if there exist $i_{1}<\cdots<i_{k}$ such that $w\left(i_{1}\right) \cdots w\left(i_{k}\right)$ is in the same relative order as $p(1) \cdots p(k)$. If w does not contains p, then w avoids p, or is p-avoiding.
Let $[321 ; 3412](w)$ be the number of distinct 321 -and 3412-patterns in a permutation w. Using the result of [Tenner(2012)], we get the following.

Let $w \in \mathfrak{S}_{n}$. Then
(1) $c(e, w)=0$ if and only if $[321 ; 3412](w)=0$.
(2) $c(e, w)=1$ if and only if $[321 ; 3412](w)=1$.

Theorem [Lakshmibai and Sandhya (1990)]

For a permutation $w \in \mathfrak{S}_{n}$, the Schubert variety X_{w} is smooth if and only if w avoids the patterns 3412 and 4231 .

A Schubert variety X_{w} is smooth and has complexity one if and only if w avoids 3412 and contains the patter 321 exactly once.
(e.g.) The permutations $321,4132,4213,2431$, and 3241 give smooth Schubert varieties of complexity 1.

Using the result of Tenner (2012), we get the following:

If a permutation w avoids every pattern in the set $\{3412,4231,4321\}$, then the Schubert variety X_{w} is smooth and the complexity of X_{w} is the number of distinct 321-patterns in w.

A Schubert variety X_{w} is smooth and has complexity one if and only if w avoids 3412 and contains the patter 321 exactly once.
(e.g.) The permutations $321,4132,4213,2431$, and 3241 give smooth Schubert varieties of complexity 1.

Using the result of Tenner (2012), we get the following:
If a permutation w avoids every pattern in the set $\{3412,4231,4321\}$, then the Schubert variety X_{w} is smooth and the complexity of X_{w} is the number of distinct 321-patterns in w.

Proposition [Lee-Masuda-Park]

Let w be a permutation in \mathfrak{S}_{n} containing exactly one 321 pattern and avoiding 3412. Then
(1) the Bruhat interval $[e, w]$ is isomorphic to a poset $\mathfrak{S}_{3} \times B_{\ell-3}$, where $\ell=\ell(w)$ and $B_{\ell-3}$ is the Boolean poset of length $(\ell-3)$, and
(2) the Bruhat interval polytope $Q_{v, w}$ is combinatorially equivalent to the polytope $\operatorname{Perm}_{2} \times I^{\ell-3}$, where Perm_{2} is the two-dimensional permutohedron (i.e., hexagon).

Theorem [Lee-Fujita-Suh]


```
Theorem [Lee-Masuda-Park]
For }x\in\mp@subsup{\mathfrak{S}}{n}{}\mathrm{ , if }w\mathrm{ avoids }3412\mathrm{ and has the pattern }321\mathrm{ exactly once, then
X
diffeomorphic to a flag Bott manifold.
```


Theorem [Lee-Fujita-Suh]

Schubert variety desingularize X_{w}
flag Bott-Samelson variety
$Z_{\mathcal{I}}$

Theorem [Lee-Masuda-Park]

For $x \in \mathfrak{S}_{n}$, if w avoids 3412 and has the pattern 321 exactly once, then X_{w} is isomorphic to a flag Bott-Samelson variety, and hence it is diffeomorphic to a flag Bott manifold.

It follows from the fact that w avoids 3412 and has the pattern 321 exactly once if and only if there exists a reduced expression of w containing $s_{i} s_{i+1} s_{i}$ as a factor and no other repetitions. See [Daly(2013)].

Theorem [Lee-Fujita-Suh]

Theorem [Lee-Masuda-Park]

For $x \in \mathfrak{S}_{n}$, if w avoids 3412 and has the pattern 321 exactly once, then X_{w} is isomorphic to a flag Bott-Samelson variety, and hence it is diffeomorphic to a flag Bott manifold.

It follows from the fact that w avoids 3412 and has the pattern 321 exactly once if and only if there exists a reduced expression of w containing $s_{i} s_{i+1} s_{i}$ as a factor and no other repetitions. See [Daly(2013)].

Thank you very much!

