Newton-Okounkov polytopes of flag varieties from cluster algebras

Naoki Fujita

The University of Tokyo

Joint work with Hironori Oya
Toric Topology 2019 in Okayama
November 20, 2019
(1) Newton-Okounkov bodies and cluster algebras

Toric degenerations

Let Z be an irreducible normal projective variety over \mathbb{C}, and \mathcal{L} an ample line bundle on Z.

Definition

A toric degeneration of (Z, \mathcal{L}) is a flat morphism

$$
\pi: \mathfrak{X}=\operatorname{Proj}(R) \rightarrow \mathbb{C}
$$

such that $\left(\pi^{-1}(t),\left.\mathcal{O}_{\mathfrak{X}}(1)\right|_{\pi^{-1}(t)}\right) \simeq(Z, \mathcal{L})$ for all $t \in \mathbb{C}^{\times}$, and $\pi^{-1}(0)$ is an irreducible normal projective toric variety.

Aim

to understand relations between the following two constructions of toric degenerations:

- Newton-Okounkov bodies (Anderson 2013),
- cluster algebras (Gross-Hacking-Keel-Kontsevich 2018).

Newton-Okounkov bodies

- Z : an irreducible normal projective variety over $\mathbb{C}\left(m:=\operatorname{dim}_{\mathbb{C}}(Z)\right)$,
- \mathcal{L} : an ample line bundle on Z,
- $\tau \in H^{0}(Z, \mathcal{L})$: a nonzero section.

Assume that Z is rational, and fix an identification

$$
\mathbb{C}(Z) \simeq \mathbb{C}\left(t_{1}, \ldots, t_{m}\right)
$$

We take a total order $<$ on \mathbb{Z}^{m}, respecting the addition, which induces a total order $<$ on the set of Laurent monomials in t_{1}, \ldots, t_{m}. Then, the lowest term valuation $v: \mathbb{C}(Z) \backslash\{0\} \rightarrow \mathbb{Z}^{m}$ is defined as follows:

$$
\begin{aligned}
& v(f / g):=v(f)-v(g), \text { and } \\
& v(f):=\left(a_{1}, \ldots, a_{m}\right) \Leftrightarrow f=c t_{1}^{a_{1}} \cdots t_{m}^{a_{m}}+(\text { higher terms w.r.t. }<)
\end{aligned}
$$

for $f, g \in \mathbb{C}\left[t_{1}, \ldots, t_{m}\right] \backslash\{0\}$, where $c \in \mathbb{C}^{\times}$.

Newton-Okounkov bodies

We define a semigroup $S(Z, \mathcal{L}, v, \tau) \subset \mathbb{Z}_{>0} \times \mathbb{Z}^{m}$, a real closed convex cone $C(Z, \mathcal{L}, v, \tau) \subset \mathbb{R}_{\geq 0} \times \mathbb{R}^{m}$ and a convex set $\Delta(Z, \mathcal{L}, v, \tau) \subset \mathbb{R}^{m}$ by

$$
\begin{aligned}
& S(Z, \mathcal{L}, v, \tau):=\left\{\left(k, v\left(\sigma / \tau^{k}\right)\right) \mid k \in \mathbb{Z}_{>0}, \sigma \in H^{0}\left(Z, \mathcal{L}^{\otimes k}\right) \backslash\{0\}\right\} \\
& C(Z, \mathcal{L}, v, \tau): \text { the smallest real closed cone containing } S(Z, \mathcal{L}, v, \tau) \\
& \Delta(Z, \mathcal{L}, v, \tau):=\left\{\mathbf{a} \in \mathbb{R}^{m} \mid(1, \mathbf{a}) \in C(Z, \mathcal{L}, v, \tau)\right\}
\end{aligned}
$$

Definition (Lazarsfeld-Mustata 2009, Kaveh-Khovanskii 2012)

The convex set $\Delta(Z, \mathcal{L}, v, \tau)$ is called a Newton-Okounkov body of Z.

Theorem (Anderson 2013)

If the semigroup $S(Z, \mathcal{L}, v, \tau)$ is finitely generated and saturated, then there exists a toric degeneration of (Z, \mathcal{L}) to the normal projective toric variety corresponding to $\Delta(Z, \mathcal{L}, v, \tau)$.

Newton-Okounkov bodies of flag varieties

- G : a connected, simply-connected semisimple algebraic group over \mathbb{C},
- $B \subset G$: a Borel subgroup,
- P_{+}: the set of dominant integral weights.

Definition

The quotient variety G / B is called the full flag variety.

Proposition

There exists a natural bijective map

$$
\begin{aligned}
P_{+} & \xrightarrow{\sim}\{\text { line bundles on } G / B \text { generated by global sections }\}, \\
\lambda & \mapsto \mathcal{L}_{\lambda} .
\end{aligned}
$$

Newton-Okounkov bodies of flag varieties

The Newton-Okounkov bodies of $\left(G / B, \mathcal{L}_{\lambda}\right)$ realize the following representation-theoretic polytopes:

- Berenstein-Littelmann-Zelevinsky's string polytopes (Kaveh 2015),
- Nakashima-Zelevinsky polytopes
(F.-Naito 2017),
- Feigin-Fourier-Littelmann-Vinberg polytopes (Feigin-Fourier-Littelmann 2017, Kiritchenko 2017).

Question

How are these polytopes related?

Newton-Okounkov bodies of flag varieties

The Newton-Okounkov bodies of $\left(G / B, \mathcal{L}_{\lambda}\right)$ realize the following representation-theoretic polytopes:

- Berenstein-Littelmann-Zelevinsky's string polytopes (Kaveh 2015),
- Nakashima-Zelevinsky polytopes
(F.-Naito 2017),
- Feigin-Fourier-Littelmann-Vinberg polytopes (Feigin-Fourier-Littelmann 2017, Kiritchenko 2017).

Question

How are these polytopes related?

Cluster varieties

Let

$$
\mathcal{A}=\bigcup_{t} \mathcal{A}_{t}=\bigcup_{t} \operatorname{Spec}(\mathbb{C}[\underbrace{x_{1}(t)^{ \pm 1}, \ldots, x_{n}(t)^{ \pm 1}}_{\text {unfrozen }}, \underbrace{x_{n+1}(t)^{ \pm 1}, \ldots, x_{m}(t)^{ \pm 1}}_{\text {frozen }}])
$$

be a cluster variety (Fock-Goncharov 2009), where t runs over the set of seeds which are mutually mutation equivalent, and the tori are glued via the following birational cluster mutations:

$$
\mu_{k}^{*}\left(x_{i}\left(t^{\prime}\right)\right)= \begin{cases}x_{i}(t) & (i \neq k) \\ x_{k}(t)^{-1}\left(\prod_{b_{k, j}^{(t)}>0} x_{j}(t)^{b_{k, j}^{(t)}}+\prod_{b_{k, j}^{(t)}<0} x_{j}(t)^{\left.-b_{k, j}^{(t)}\right)}\right. & (i=k)\end{cases}
$$

if $t^{\prime}=\mu_{k}(t)$, where $B(t)=\left(b_{k, j}^{(t)}\right)_{k, j}$ is the exchange matrix of t.

Definition (Berenstein-Fomin-Zelevinsky 2005)

The ring $\mathbb{C}[\mathcal{A}]$ of regular functions is called an upper cluster algebra.

Cluster varieties

Denoting the dual torus of \mathcal{A}_{t} by \mathcal{A}_{t}^{\vee}, we have

$$
\mathcal{A}=\bigcup_{t} \mathcal{A}_{t} \quad \stackrel{\text { "mirror" }}{\longleftrightarrow} \mathcal{A}^{\vee}=\bigcup_{t} \mathcal{A}_{t}^{\vee}
$$

The space \mathcal{A}^{\vee} is called the Fock-Goncharov dual, and defined to be the Langlands dual of the \mathcal{X}-cluster variety. Since the gluing maps of \mathcal{A}^{\vee} are given by subtraction-free rational functions, we obtain the set $\mathcal{A}^{\vee}\left(\mathbb{R}^{T}\right)$ of \mathbb{R}^{T}-valued points, where \mathbb{R}^{T} is a semifield $(\mathbb{R}, \max ,+)$. More precisely, $\mathcal{A}^{\vee}\left(\mathbb{R}^{T}\right)$ is defined by gluing $\mathcal{A}_{t}^{\vee}\left(\mathbb{R}^{T}\right)=\mathbb{R}^{m}$ via the following tropicalized cluster mutation:

$$
\mu_{k}^{T}: \mathcal{A}_{t}^{\vee}\left(\mathbb{R}^{T}\right) \rightarrow \mathcal{A}_{t^{\prime}}^{\vee}\left(\mathbb{R}^{T}\right),\left(g_{1}, \ldots, g_{m}\right) \mapsto\left(g_{1}^{\prime}, \ldots, g_{m}^{\prime}\right)
$$

where

$$
g_{i}^{\prime}= \begin{cases}g_{i}+\max \left\{b_{k, i}^{(t)}, 0\right\} g_{k}-b_{k, i}^{(t)} \min \left\{g_{k}, 0\right\} & (i \neq k) \\ -g_{k} & (i=k)\end{cases}
$$

Gross-Hacking-Keel-Kontsevich's toric degenerations

For each t, we have

$$
\mathcal{A}^{\vee}\left(\mathbb{R}^{T}\right) \simeq \mathcal{A}_{t}^{\vee}\left(\mathbb{R}^{T}\right)=\mathbb{R}^{m}
$$

We fix $\Xi \subset \mathcal{A}^{\vee}\left(\mathbb{R}^{T}\right)$ such that its image in $\mathcal{A}_{t}^{\vee}\left(\mathbb{R}^{T}\right)=\mathbb{R}^{m}$, denoted by Ξ_{t}, is an m-dimensional rational convex polytope for each t.

Theorem (Gross-Hacking-Keel-Kontsevich 2018)

Under some conditions on \mathcal{A} and Ξ, there exists a $\mathbb{Z}_{\geq 0}$-graded ring R_{t} for each t together with a flat morphism $\pi_{t}: \operatorname{Proj}\left(R_{t}\right) \rightarrow \mathbb{C}^{m}$ such that

- $\pi_{t}^{-1}(z)$ for $z \in\left(\mathbb{C}^{\times}\right)^{m}$ is a normal projective variety which compactifies \mathcal{A},
- $\pi_{t}^{-1}(0)$ is the normal projective toric variety corresponding to $\Xi_{t} \subset \mathbb{R}^{m}$.

(1) Newton-Okounkov bodies and cluster algebras

(2) g-vectors as higher rank valuations

(3) Case of flag varieties

extended g-vectors

Theorem (Fomin-Zelevinsky 2007, Derksen-Weyman-Zelevinsky 2010, Gross-Hacking-Keel-Kontsevich 2018)
For all t, t^{\prime} and $1 \leq i \leq m$,

$$
x_{i}\left(t^{\prime}\right) \in x_{1}(t)^{g_{1}} \cdots x_{m}(t)^{g_{m}}\left(1+\sum_{0 \neq\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}} \mathbb{Z} \hat{y}_{1}^{a_{1}} \cdots \hat{y}_{n}^{a_{n}}\right)
$$

for some $g_{t}\left(x_{i}\left(t^{\prime}\right)\right):=\left(g_{1}, \ldots, g_{m}\right) \in \mathbb{Z}^{m}$, where

$$
\hat{y}_{i}:=x_{1}(t)^{b_{i, 1}^{(t)}} \cdots x_{m}(t)^{b_{i, m}^{(t)}} .
$$

The vector $g_{t}\left(x_{i}\left(t^{\prime}\right)\right) \in \mathbb{Z}^{m}$ is called the extended g-vector of $x_{i}\left(t^{\prime}\right)$.

g-vectors as higher rank valuations

Definition (Qin 2017)

For each t, define a partial order \leq_{t} on \mathbb{Z}^{m} by

$$
g^{\prime} \leq_{t} g \Leftrightarrow g-g^{\prime} \in \sum_{1 \leq i \leq n} \mathbb{Z}_{\geq 0}\left(b_{i, 1}^{(t)}, \ldots, b_{i, m}^{(t)}\right)
$$

This \leq_{t} is called the dominance order associated with t.
Since \mathcal{A}_{t} is an open subvariety of \mathcal{A}, we have

$$
\mathbb{C}(\mathcal{A})=\mathbb{C}\left(\mathcal{A}_{t}\right)=\mathbb{C}\left(x_{1}(t), \ldots, x_{m}(t)\right)
$$

We fix a total order \leq_{t} on \mathbb{Z}^{m} which refines the dominance order \leq_{t}.

Definition

For each t, define a valuation $v_{t}: \mathbb{C}(\mathcal{A}) \backslash\{0\} \rightarrow \mathbb{Z}^{m}$ to be the lowest term valuation associated with \leq_{t}.

g-vectors as higher rank valuations

Proposition

For all t, t^{\prime} and $1 \leq i \leq m$, the equality $v_{t}\left(x_{i}\left(t^{\prime}\right)\right)=g_{t}\left(x_{i}\left(t^{\prime}\right)\right)$ holds.

Proposition

The valuation v_{t} generalizes the extended g-vectors of the theta function basis.

Corollary

Under Gross-Hacking-Keel-Kontsevich's toric degeneration, the polytope Ξ_{t} is identical to the Newton-Okounkov body of $\pi_{t}^{-1}(z)$ associated with v_{t}.

Let Z be an irreducible normal projective variety which is birational to \mathcal{A}.

Problem

Compute Newton-Okounkov bodies of Z associated with v_{t}.

(1) Newton-Okounkov bodies and cluster algebras

(2) g-vectors as higher rank valuations

(3) Case of flag varieties

Cluster structures

Let U^{-}be the unipotent radical of the opposite Borel subgroup B^{-}, and

$$
G / B=\bigsqcup_{w \in W} B w B / B
$$

the Bruhat decomposition of G / B, where W is the Weyl group.

Definition

For $w \in W$, the unipotent cell $U_{w}^{-} \subset G$ is defined by

$$
U_{w}^{-}:=B w B \cap U^{-}
$$

Theorem (Berenstein-Fomin-Zelevinsky 2005)

The coordinate ring $\mathbb{C}\left[U_{w}^{-}\right]$admits an upper cluster algebra structure.
There exists $w_{0} \in W$, called the longest element, such that the natural projection $G \rightarrow G / B$ induces an open embedding $U_{w_{0}}^{-} \hookrightarrow G / B$.

Relation with string polytopes

Each reduced word $\mathbf{i}=\left(i_{1}, \ldots, i_{m}\right)$ for w_{0} induces a seed $t_{\mathbf{i}}$ for $U_{w_{0}}^{-}$.

Example

Let $G=S L_{4}(\mathbb{C})$, and $\mathbf{i}=(1,2,1,3,2,1)$. Then, the exchange matrix $B\left(t_{\mathbf{i}}\right)=\left(b_{i, j}^{\left(t_{\mathbf{i}}\right)}\right)_{i, j}$ corresponds to the following quiver:

For instance, $b_{i, j}^{\left(t_{\mathbf{i}}\right)}=1$ and $b_{j, i}^{\left(t_{\mathbf{i}}\right)}=-1$ (if defined and) if there exists $i \rightarrow j$.

Theorem (F.-Oya)

The Newton-Okounkov body $\Delta\left(G / B, \mathcal{L}_{\lambda}, v_{t_{\mathrm{i}}}, \tau\right)$ is unimodularly equivalent to the string polytope $\Delta_{\mathbf{i}}(\lambda)$ associated with \mathbf{i} and λ.

Relation with Nakashima-Zelevinsky polytopes

Berenstein-Fomin-Zelevinsky (1996) and Berenstein-Zelevinsky (1997) introduced the twist automorphism $\eta_{w}: U_{w}^{-} \xrightarrow{\sim} U_{w}^{-}$to solve a factorization problem, called the Chamber Ansatz. It is defined by

$$
\eta_{w}(u):=\left[u^{T} \bar{w}\right]_{-},
$$

where u^{T} is the transpose of u, and $\bar{w} \in G$ is a lift for w. In addition, [$\left.u^{T} \bar{w}\right]_{-}$is the U^{-}-part of $u^{T} \bar{w}$ under the Gaussian decomposition. Then, there exists a sequence $\vec{\mu}=\mu_{k_{1}} \mu_{k_{2}} \cdots \mu_{k_{l}}$ of mutations which corresponds to η_{w} in some sense (Geiss-Leclerc-Schröer 2011, 2012, ...). We define a seed $\hat{t}_{\mathbf{i}}$ by

$$
\hat{t}_{\mathbf{i}}:=\vec{\mu}^{-1}\left(t_{\mathbf{i}}\right) .
$$

Theorem (F.-Oya)

The Newton-Okounkov body $\Delta\left(G / B, \mathcal{L}_{\lambda}, v_{\hat{t}_{\mathrm{i}}}, \tau\right)$ is unimodularly equivalent to the Nakashima-Zelevinsky polytope $\widetilde{\Delta}_{\mathbf{i}}(\lambda)$ associated with \mathbf{i} and λ.

Simply-laced case

In simply-laced case, using the monoidal categorification of the cluster algebra by Kang-Kashiwara-Kim-Oh (2018), we obtain the following.

Theorem (F.-Oya)

If G is of simply-laced, then the following hold.
(1) For each t, the Newton-Okounkov body $\Delta\left(G / B, \mathcal{L}_{\lambda}, v_{t}, \tau\right)$ is a rational convex polytope which gives a toric degeneration of G / B.
(2) If $t^{\prime}=\mu_{k}(t)$, then the following equality holds:

$$
\Delta\left(G / B, \mathcal{L}_{\lambda}, v_{t^{\prime}}, \tau\right)=\mu_{k}^{T}\left(\Delta\left(G / B, \mathcal{L}_{\lambda}, v_{t}, \tau\right)\right)
$$

Corollary

If G is of simply-laced, then the string polytopes $\Delta_{\mathbf{i}}(\lambda)$ and the Nakashima-Zelevinsky polytopes $\widetilde{\Delta}_{\mathbf{i}}(\lambda)$ are all related by tropicalized cluster mutations.

