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ZK (X ,A)

Let (X ,A) be a pair of spaces and let K be an abstract
simplicial complex, K ⊆ 2[m] (m = N + 1).
The associated Generalized Moment-Angle Complex
(K -power) is the space,

ZK (X ,A) = colimσ∈K (X ,A)σ = colimσ∈K (
∏
i∈σ

X×
∏
j /∈σ

A) ⊆ X m.

For x = (xi) ∈ X m let IA(x) := {i ∈ [m] | xi /∈ A}.
Then

ZK (X ,A) = {x ∈ X m | IA(x) ∈ K} .
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Alexander dual pairs 〈K ,K ◦〉

K ∗ L = {A ] B | A ∈ K ,B ∈ L} .

K ∗∆ L = {A ] B | A ∈ K ,B ∈ L and A ∩ B = ∅} .

K ◦ = {A ⊂ [m] | Ac /∈ K} is the Alexander dual of K .

(Recall Bier(K ) = K ∗∆ K ◦ is the associated Bier sphere.)

Proposition: (V. Welker, V. Grujić)

ZK (X ,A) ] ZK◦(X ,Ac) = X m .

Proof: For each x ∈ X m either IA(x) ∈ K or IAc (x) ∈ K ◦, but
not both! Indeed, IA(x) ∩ IAc (x) = ∅.
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Collectively unavoidable complexes

Definition: An ordered r -tuple K = 〈K1, . . . ,Kr〉 of
subcomplexes of 2[m] is collectively r -unavoidable if for each
ordered collection (A1, . . . ,Ar ) of disjoint sets in [m] there
exists i such that Ai ∈ Ki .
Example: The pair 〈K ,K ◦〉 is collectively unavoidable.
Indeed, if (A1,A2) is an ordered pair of disjoint sets then either
A1 ∈ K or (in the opposite case) Ac

1 ∈ K ◦, which implies
A2 ∈ K ◦.
A complex K ⊆ 2[r ] is by definition r -unavoidable if the r -tuple
〈K ,K , . . . ,K 〉 is collectively r -unavoidable.



Collectively unavoidable complexes
and moment-angle complexes

Collectively unavoidable families K = 〈Ki〉ri=1 admit a
characterization in the language of generalized moment-angle
complexes.
Proposition: Let X be a topological space and {Ai}r

i=1 a
family of its subspaces which are complementary in the sense
that X = Ai ∪ Aj for each i 6= j . Then if
K = 〈Ki〉ri=1 = 〈K1, . . . ,Kr〉 is a collectively r -unavoidable
family of subcomplexes of the N-dimensional simplex
∆N = 2[N+1] then

X N+1 = ZK1(X ,A1) ∪ · · · ∪ ZKr (X ,Ar ) . (1)

Conversely, if (1) holds for each X and each family {Ai}r
i=1 of

complementary subspaces in X then K = 〈Ki〉ri=1 is a
collectively r -unavoidable family of simplicial complexes.



Proof of the Proposition
It follows from the definition that

ZKi (X ,Ai) = {x ∈ X N+1 | Ii(x) ∈ Ki}
where Ii(x) := {j ∈ [N + 1] | xj /∈ Ai}.
Ai ∪ Aj = X for each i 6= j implies Ii(x) ∩ Ij(x) = ∅. By
collective unavoidability of K = 〈Ki〉ri=1, for each x ∈ X N+1

there exists i ∈ [r ] such that {Ii(x) ∈ Ki}, and the relation (1)
is an immediate consequence.
Conversely, assume that K = 〈Ki〉ri=1 is not collectively
unavoidable. By definition there exist pairwise disjoint subsets
{Ij}r

j=1 of [N + 1] such that Ii /∈ Ki for each i ∈ [r ]. Let
X = [N + 1] and let Ai := [N + 1] \ Ii . Let x : [N + 1]→ X be
the identity map, (xi = i for each i ∈ [N + 1]). Then,

x ∈ X N+1 \
r⋃

i=1
ZKi (X ,Ai) .



A canonical family of complementary
sets

Let W = ∨m
j=1 Ij = ∨m

j=1[0, 1] be the Kowalski m-hedgehog
space obtained by gluing m “spikes” along 0. Let Wi are its
(m− 1)-hedgehog subspaces obtained by removing the spike Ii .
Then {Wi}m

i=1 is a family of complementary set and if
K = 〈Ki〉ri=1 = 〈K1, . . . ,Kr〉 is a collectively r -unavoidable
family of complexes then

W N+1 = ZK1(W ,W1) ∪ · · · ∪ ZKr (W ,Wr ) . (2)



Van Kampen-Flores type theorem for
collectively unavoidable complexes

Theorem A. K = 〈Ki〉ri=1 = 〈K1, . . . ,Kr〉 is a collectively
r -unavoidable family of subcomplexes of the N-dimensional
simplex ∆N = 2[N+1], where r = pν is a power of a prime.
Assume that there exists k ≥ 1 such that for each i

∆(k−1)
N ⊆ Ki ⊆ ∆(k)

N

where ∆(k)
N is the k-dimensional skeleton of ∆N .

Suppose that N ≥ (r − 1)(d + 2).



Theorem A conclusion

Then for each continuous map f : ∆N → Rd , there exist
vertex-disjoint faces σ1, . . . , σr of ∆N such that

f (σ1) ∩ · · · ∩ f (σr ) 6= ∅

and
σ1 ∈ K1, σ2 ∈ K2, . . . , σr ∈ Kr .

[JPZ-1] D. Jojić, G. Panina, R. Živaljević, A Tverberg type
theorem for collectively unavoidable complexes, Israel J. Math.



Van Kampen-Flores theorem

Theorem: (Van Kampen-Flores 1930s) One can always find
two intersecting triangles in each collection of 7 points in
four-dimensional euclidean space.

More generally, for each collection C ⊂ R2d of cardinality
(2d + 3) there exist two disjoint sub-collections C1 and C2 of
size ≤ (d + 1) such that,

conv(C1) ∩ conv(C2) 6= ∅.
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Van Kampen-Flores theorem
non-linear version

Theorem: For each continuous map,

f : ∆N → R2d

where N = 2d + 2 and ∆N is an N-dimensional simplex, there
exist two disjoint faces σ1 and σ2 of ∆N such that
dim(σi) ≤ d and

f (σ1) ∩ f (σ2) 6= ∅.



Balanced generalized van
Kampen-Flores theorem

Theorem B: Let r ≥ 2 be a prime power, d ≥ 1,
N ≥ (r − 1)(d + 2), and rk + s ≥ (r − 1)d for integers k ≥ 0
and 0 ≤ s < r . Then for every continuous map f : ∆N → Rd ,
there are r pairwise disjoint faces σ1, . . . , σr of ∆N such that
f (σ1) ∩ · · · ∩ f (σr ) 6= ∅, with dim σi ≤ k + 1 for 1 ≤ i ≤ s
and dim σi ≤ k for s < i ≤ r .

D. Jojić, S.T. Vrećica, R.T. Živaljević.
Symmetric multiple chessboard complexes and a new theorem of
Tverberg type, J. Algebraic Combin., 46 (2017), 15–31.

The theorem confirms a conjecture in [BFZ14] Blagojević, Frick, and Ziegler

(Conjecture 6.6 in, Tverberg plus constraints, Bull. London Math. Soc., 46 (2014).)
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Consequences
(1) Implies positive answer to the ‘balanced case’ of the

problem whether each admissible r -tuple is Tverberg
prescribable, ([BFZ14], Question 6.9];

(2) The classical van Kampen-Flores theorem is obtained if d
is even, r = 2, s = 0, and k = d

2 ;
(3) The sharpened van Kampen-Flores theorem ([BFZ14],

Theorem 6.8) corresponds to the case when d is odd,
r = 2, s = 1, and k = bd

2 c;
(4) The case d = 3 of the ‘sharpened van Kampen-Flores

theorem’ is equivalent to the Conway-Gordon-Sachs
theorem which says that the complete graph K6 on 6
vertices is ‘intrinsically linked’;

(5) The generalized van Kampen-Flores theorem ([BFZ14],
Theorem 6.3), which improves upon earlier results of
Sarkaria and Volovikov, follows for s = 0 and k = d r−1

r de.
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Counterexamples
Theorems A and B are positive results obtained after the
fundamental progress leading to counterexamples to the
continuous Tverberg-Van Kampen-Flores theorems in the
non-prime power with central contributions by:
• I. Mabillard and U. Wagner;
• P.V.M. Blagojević, F. Frick, G. Ziegler;
• M. Özaydin;
• M. Gromov.

A. Skopenkov, A user’s guide to the topological Tverberg
Conjecture, Russian Math. Surveys, 73:2 (2018), 323–353.
Earlier version: arXiv:1605.05141v4.
For the improved counterexamples see also
• S. Avvakumov, R. Karasev and A. Skopenkov, (2019).



Proofs of Theorems A and B

A central role is played by high connectivity results as
illustrated by:
Theorem C: Suppose that K = 〈Ki〉ri=1 = 〈K1, . . . ,Kr〉 is a
collectively r -unavoidable family of subcomplexes of 2[m].
Then the associated deleted join

DelJoin(K) = K1 ∗∆ K2 ∗∆ · · · ∗∆ Kr

is (m − r − 1)-connected.
D. Jojić, I. Nekrasov, G. Panina, R. Živaljević, Alexander r-tuples
and Bier complexes, Publ. Inst. Math. (Beograd) (N.S.) 104(118)
(2018), 1–22.



Connection with moment-angle
complexes

Theorem:

Bier(K ) := K ∗∆ K ◦ ' Z̆K (X ; A) ∩ Z̆K◦(X ; B) .

where X = [0, 1],A = [0, 1/2],B = [1/2, 1] and
Z̆K (X ,A) := ZK (X ,A) \ {1/2}m is the “reduced”
moment-angle complex.



Connection with moment-angle
complexes

More generally
Theorem:

K1 ∗∆ · · · ∗∆ Kr ' Z̆K1(W ; W1) ∩ · · · ∩ Z̆Kr (W ; Wr )

where W = ∨m
i=1[0, 1] is the Kowalski m-hedgehog space and

Wi are its (m − 1)-hedgehog subspaces. The reduced
moment-angle complex is obtained by removing the point
(0, 0, . . . , 0).



Theorem C revisited

Theorem: Assume that {Ki}r
i=1 is a family of subcomplexes

of 2[m] ∼= ∆N such that

W m = ZK1(W ,W1) ∪ · · · ∪ ZKr (W ,Wr ) . (3)

Then the space

Z̆K1(W ; W1) ∩ · · · ∩ Z̆Kr (W ; Wr )

is (m − r − 1)-connected.



D. Jojić, I. Nekrasov, G. Panina, R. Živaljević, Alexander r-tuples
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