Generalized moment-angle complexes and collectively unavoidable complexes

> Rade T. Živaljević Mathematical Institute SASA, Belgrade

> Toric Topology 2019 in Okayama

Okayama University of Science November 18–21, 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let (X, A) be a pair of spaces and let K be an abstract simplicial complex, $K \subseteq 2^{[m]}$ (m = N + 1).

The associated *Generalized Moment-Angle Complex* (*K*-power) is the space,

$$\mathcal{Z}_{\mathcal{K}}(X, \mathcal{A}) = \operatorname{colim}_{\sigma \in \mathcal{K}}(X, \mathcal{A})^{\sigma} = \operatorname{colim}_{\sigma \in \mathcal{K}}(\prod_{i \in \sigma} X imes \prod_{j \notin \sigma} \mathcal{A}) \subseteq X^{m}.$$

$$\mathcal{Z}_{K}(X,A)$$

Let (X, A) be a pair of spaces and let K be an abstract simplicial complex, $K \subseteq 2^{[m]}$ (m = N + 1).

The associated *Generalized Moment-Angle Complex* (*K*-power) is the space,

$$\mathcal{Z}_{K}(X,A) = \operatorname{colim}_{\sigma \in K}(X,A)^{\sigma} = \operatorname{colim}_{\sigma \in K}(\prod_{i \in \sigma} X \times \prod_{j \notin \sigma} A) \subseteq X^{m}.$$

For
$$x = (x_i) \in X^m$$
 let $I_A(x) := \{i \in [m] \mid x_i \notin A\}.$

Then

$$\mathcal{Z}_{K}(X,A) = \{x \in X^{m} \mid I_{A}(x) \in K\}.$$

Alexander dual pairs $\langle K, K^{\circ} \rangle$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$K * L = \{A \uplus B \mid A \in K, B \in L\}.$$

 $K *_{\Delta} L = \{A \uplus B \mid A \in K, B \in L \text{ and } A \cap B = \emptyset\}.$

 $K^{\circ} = \{A \subset [m] \mid A^{c} \notin K\} \text{ is the Alexander dual of } K.$ (Recall $Bier(K) = K *_{\Delta} K^{\circ}$ is the associated *Bier sphere*.) Alexander dual pairs $\langle K, K^{\circ} \rangle$

$$K * L = \{A \uplus B \mid A \in K, B \in L\}.$$

 $K *_{\Delta} L = \{A \uplus B \mid A \in K, B \in L \text{ and } A \cap B = \emptyset\}.$

 $K^{\circ} = \{A \subset [m] \mid A^{c} \notin K\}$ is the Alexander dual of K. (Recall $Bier(K) = K *_{\Delta} K^{\circ}$ is the associated *Bier sphere*.) **Proposition:** (V. Welker, V. Grujić)

$$\mathcal{Z}_{\mathcal{K}}(X,A) \uplus \mathcal{Z}_{\mathcal{K}^{\circ}}(X,A^{c}) = X^{m}.$$

Proof: For each $x \in X^m$ either $I_A(x) \in K$ or $I_{A^c}(x) \in K^\circ$, but not both! Indeed, $I_A(x) \cap I_{A^c}(x) = \emptyset$.

Collectively unavoidable complexes

Definition: An ordered *r*-tuple $\mathcal{K} = \langle K_1, \ldots, K_r \rangle$ of subcomplexes of $2^{[m]}$ is *collectively r-unavoidable* if for each **ordered collection** (A_1, \ldots, A_r) of disjoint sets in [m] there exists *i* such that $A_i \in K_i$.

Example: The pair $\langle K, K^{\circ} \rangle$ is collectively unavoidable. Indeed, if (A_1, A_2) is an ordered pair of disjoint sets then either $A_1 \in K$ or (in the opposite case) $A_1^c \in K^{\circ}$, which implies $A_2 \in K^{\circ}$.

A complex $K \subseteq 2^{[r]}$ is by definition *r*-unavoidable if the *r*-tuple $\langle K, K, \dots, K \rangle$ is collectively *r*-unavoidable.

 $\label{eq:complexes} \begin{array}{c} \mbox{Collectively unavoidable complexes} \\ \mbox{and moment-angle complexes} \\ \mbox{Collectively unavoidable families $\mathcal{K}=\langle \mathcal{K}_i\rangle_{i=1}^r$ admit a characterization in the language of generalized moment-angle complexes. } \end{array}$

Proposition: Let X be a topological space and $\{A_i\}_{i=1}^r$ a family of its subspaces which are *complementary* in the sense that $X = A_i \cup A_j$ for each $i \neq j$. Then if $\mathcal{K} = \langle K_i \rangle_{i=1}^r = \langle K_1, \ldots, K_r \rangle$ is a collectively *r*-unavoidable family of subcomplexes of the *N*-dimensional simplex $\Delta_N = 2^{[N+1]}$ then

$$X^{N+1} = \mathcal{Z}_{\mathcal{K}_1}(X, \mathcal{A}_1) \cup \cdots \cup \mathcal{Z}_{\mathcal{K}_r}(X, \mathcal{A}_r).$$
 (1)

Conversely, if (1) holds for each X and each family $\{A_i\}_{i=1}^r$ of complementary subspaces in X then $\mathcal{K} = \langle K_i \rangle_{i=1}^r$ is a collectively *r*-unavoidable family of simplicial complexes.

Proof of the Proposition

It follows from the definition that

$$\mathcal{Z}_{\mathcal{K}_i}(X,A_i) = \{x \in X^{N+1} \mid I_i(x) \in \mathcal{K}_i\}$$

where $I_i(x) := \{j \in [N+1] \mid x_j \notin A_i\}$. $A_i \cup A_j = X$ for each $i \neq j$ implies $I_i(x) \cap I_j(x) = \emptyset$. By collective unavoidability of $\mathcal{K} = \langle K_i \rangle_{i=1}^r$, for each $x \in X^{N+1}$ there exists $i \in [r]$ such that $\{I_i(x) \in K_i\}$, and the relation (1) is an immediate consequence.

Conversely, assume that $\mathcal{K} = \langle K_i \rangle_{i=1}^r$ is not collectively unavoidable. By definition there exist pairwise disjoint subsets $\{I_j\}_{j=1}^r$ of [N+1] such that $I_i \notin K_i$ for each $i \in [r]$. Let X = [N+1] and let $A_i := [N+1] \setminus I_i$. Let $x : [N+1] \to X$ be the identity map, $(x_i = i \text{ for each } i \in [N+1])$. Then,

$$x \in X^{N+1} \setminus \bigcup_{i=1}^{r} \mathcal{Z}_{K_i}(X, A_i).$$

A canonical family of complementary sets

Let $W = \bigvee_{j=1}^{m} I_j = \bigvee_{j=1}^{m} [0, 1]$ be the Kowalski *m*-hedgehog space obtained by gluing *m* "spikes" along 0. Let W_i are its (m-1)-hedgehog subspaces obtained by removing the spike I_i . Then $\{W_i\}_{i=1}^{m}$ is a family of complementary set and if $\mathcal{K} = \langle K_i \rangle_{i=1}^r = \langle K_1, \ldots, K_r \rangle$ is a collectively *r*-unavoidable family of complexes then

$$W^{N+1} = \mathcal{Z}_{K_1}(W, W_1) \cup \cdots \cup \mathcal{Z}_{K_r}(W, W_r).$$
(2)

(日)(1)(

Van Kampen-Flores type theorem for collectively unavoidable complexes

Theorem A. $\mathcal{K} = \langle K_i \rangle_{i=1}^r = \langle K_1, \dots, K_r \rangle$ is a *collectively r*-*unavoidable* family of subcomplexes of the *N*-dimensional simplex $\Delta_N = 2^{[N+1]}$, where $r = p^{\nu}$ is a power of a prime.

Assume that there exists $k \ge 1$ such that for each *i*

$$\Delta_N^{(k-1)} \subseteq K_i \subseteq \Delta_N^{(k)}$$

where $\Delta_N^{(k)}$ is the *k*-dimensional skeleton of Δ_N . Suppose that $N \ge (r-1)(d+2)$.

Theorem A conclusion

Then for each continuous map $f : \Delta_N \to \mathbb{R}^d$, there exist vertex-disjoint faces $\sigma_1, \ldots, \sigma_r$ of Δ_N such that

$$f(\sigma_1) \cap \cdots \cap f(\sigma_r) \neq \emptyset$$

and

$$\sigma_1 \in K_1, \sigma_2 \in K_2, \ldots, \sigma_r \in K_r.$$

[JPZ-1] D. Jojić, G. Panina, R. Živaljević, A Tverberg type theorem for collectively unavoidable complexes, Israel J. Math.

Van Kampen-Flores theorem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem: (Van Kampen-Flores 1930s) One can always find two intersecting triangles in each collection of 7 points in four-dimensional euclidean space.

Van Kampen-Flores theorem

Theorem: (Van Kampen-Flores 1930s) One can always find two intersecting triangles in each collection of 7 points in four-dimensional euclidean space.

More generally, for each collection $C \subset \mathbb{R}^{2d}$ of cardinality (2d+3) there exist two disjoint sub-collections C_1 and C_2 of size $\leq (d+1)$ such that,

 $\operatorname{conv}(C_1) \cap \operatorname{conv}(C_2) \neq \emptyset.$

Van Kampen-Flores theorem non-linear version

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem: For each continuous map,

$$f:\Delta_N\to\mathbb{R}^{2d}$$

where N = 2d + 2 and Δ_N is an *N*-dimensional simplex, there exist two disjoint faces σ_1 and σ_2 of Δ_N such that $\dim(\sigma_i) \leq d$ and $f(\sigma_1) \cap f(\sigma_2) \neq \emptyset$.

Balanced generalized van Kampen-Flores theorem

Theorem B: Let $r \ge 2$ be a prime power, $d \ge 1$, $N \ge (r-1)(d+2)$, and $rk + s \ge (r-1)d$ for integers $k \ge 0$ and $0 \le s < r$. Then for every continuous map $f : \Delta_N \to \mathbb{R}^d$, there are r pairwise disjoint faces $\sigma_1, \ldots, \sigma_r$ of Δ_N such that $f(\sigma_1) \cap \cdots \cap f(\sigma_r) \ne \emptyset$, with dim $\sigma_i \le k + 1$ for $1 \le i \le s$ and dim $\sigma_i \le k$ for $s < i \le r$. Balanced generalized van Kampen-Flores theorem

- ロ ト - 4 回 ト - 4 □

Theorem B: Let $r \ge 2$ be a prime power, $d \ge 1$, $N \ge (r-1)(d+2)$, and $rk + s \ge (r-1)d$ for integers $k \ge 0$ and $0 \le s < r$. Then for every continuous map $f : \Delta_N \to \mathbb{R}^d$, there are r pairwise disjoint faces $\sigma_1, \ldots, \sigma_r$ of Δ_N such that $f(\sigma_1) \cap \cdots \cap f(\sigma_r) \ne \emptyset$, with dim $\sigma_i \le k + 1$ for $1 \le i \le s$ and dim $\sigma_i \le k$ for $s < i \le r$.

D. Jojić, S.T. Vrećica, R.T. Živaljević. Symmetric multiple chessboard complexes and a new theorem of Tverberg type, J. Algebraic Combin., 46 (2017), 15–31. Balanced generalized van Kampen-Flores theorem

Theorem B: Let $r \ge 2$ be a prime power, $d \ge 1$, $N \ge (r-1)(d+2)$, and $rk + s \ge (r-1)d$ for integers $k \ge 0$ and $0 \le s < r$. Then for every continuous map $f : \Delta_N \to \mathbb{R}^d$, there are r pairwise disjoint faces $\sigma_1, \ldots, \sigma_r$ of Δ_N such that $f(\sigma_1) \cap \cdots \cap f(\sigma_r) \ne \emptyset$, with dim $\sigma_i \le k + 1$ for $1 \le i \le s$ and dim $\sigma_i \le k$ for $s < i \le r$.

D. Jojić, S.T. Vrećica, R.T. Živaljević. Symmetric multiple chessboard complexes and a new theorem of Tverberg type, J. Algebraic Combin., 46 (2017), 15–31.

The theorem confirms a conjecture in [BFZ14] Blagojević, Frick, and Ziegler (Conjecture 6.6 in, Tverberg plus constraints, Bull. London Math. Soc., 46 (2014).)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(1) Implies positive answer to the 'balanced case' of the problem whether each *admissible r*-tuple is *Tverberg prescribable*, ([BFZ14], Question 6.9];

- (1) Implies positive answer to the 'balanced case' of the problem whether each *admissible r*-tuple is *Tverberg prescribable*, ([BFZ14], Question 6.9];
- (2) The classical van Kampen-Flores theorem is obtained if d is even, r = 2, s = 0, and $k = \frac{d}{2}$;

- (1) Implies positive answer to the 'balanced case' of the problem whether each *admissible r*-tuple is *Tverberg prescribable*, ([BFZ14], Question 6.9];
- (2) The classical van Kampen-Flores theorem is obtained if d is even, r = 2, s = 0, and $k = \frac{d}{2}$;
- (3) The sharpened van Kampen-Flores theorem ([BFZ14], Theorem 6.8) corresponds to the case when *d* is odd, r = 2, s = 1, and $k = \lfloor \frac{d}{2} \rfloor$;

- (1) Implies positive answer to the 'balanced case' of the problem whether each *admissible r*-tuple is *Tverberg prescribable*, ([BFZ14], Question 6.9];
- (2) The classical van Kampen-Flores theorem is obtained if d is even, r = 2, s = 0, and $k = \frac{d}{2}$;
- (3) The sharpened van Kampen-Flores theorem ([BFZ14], Theorem 6.8) corresponds to the case when *d* is odd, r = 2, s = 1, and $k = \lfloor \frac{d}{2} \rfloor$;
- (4) The case d = 3 of the 'sharpened van Kampen-Flores theorem' is equivalent to the Conway-Gordon-Sachs theorem which says that the complete graph K₆ on 6 vertices is 'intrinsically linked';

- (1) Implies positive answer to the 'balanced case' of the problem whether each *admissible r*-tuple is *Tverberg prescribable*, ([BFZ14], Question 6.9];
- (2) The classical van Kampen-Flores theorem is obtained if d is even, r = 2, s = 0, and $k = \frac{d}{2}$;
- (3) The sharpened van Kampen-Flores theorem ([BFZ14], Theorem 6.8) corresponds to the case when *d* is odd, r = 2, s = 1, and $k = \lfloor \frac{d}{2} \rfloor$;
- (4) The case d = 3 of the 'sharpened van Kampen-Flores theorem' is equivalent to the Conway-Gordon-Sachs theorem which says that the complete graph K₆ on 6 vertices is 'intrinsically linked';
- (5) The generalized van Kampen-Flores theorem ([BFZ14], Theorem 6.3), which improves upon earlier results of Sarkaria and Volovikov, follows for s = 0 and $k = \left[\frac{r-1}{s}d\right]$.

Counterexamples

・ロト・日本・日本・日本・日本・日本

Theorems A and B are **positive results** obtained after the fundamental progress leading to counterexamples to the continuous Tverberg-Van Kampen-Flores theorems in the non-prime power with central contributions by:

- I. Mabillard and U. Wagner;
- P.V.M. Blagojević, F. Frick, G. Ziegler;
- M. Özaydin;
- M. Gromov.

A. Skopenkov, A user's guide to the topological Tverberg Conjecture, Russian Math. Surveys, 73:2 (2018), 323–353. Earlier version: arXiv:1605.05141v4.

For the improved counterexamples see also

• S. Avvakumov, R. Karasev and A. Skopenkov, (2019).

Proofs of Theorems A and B

A central role is played by high connectivity results as illustrated by:

Theorem C: Suppose that $\mathcal{K} = \langle K_i \rangle_{i=1}^r = \langle K_1, \ldots, K_r \rangle$ is a *collectively r-unavoidable* family of subcomplexes of $2^{[m]}$. Then the associated deleted join

$$DelJoin(\mathcal{K}) = K_1 *_{\Delta} K_2 *_{\Delta} \cdots *_{\Delta} K_r$$

is (m - r - 1)-connected.

D. Jojić, I. Nekrasov, G. Panina, R. Živaljević, *Alexander r-tuples and Bier complexes*, Publ. Inst. Math. (Beograd) (N.S.) 104(118) (2018), 1–22.

Connection with moment-angle complexes

Theorem:

$$Bier(K) := K *_{\Delta} K^{\circ} \simeq \breve{\mathcal{Z}}_{K}(X; A) \cap \breve{\mathcal{Z}}_{K^{\circ}}(X; B)$$
 .

where X = [0, 1], A = [0, 1/2], B = [1/2, 1] and $\check{Z}_{\kappa}(X, A) := \mathcal{Z}_{\kappa}(X, A) \setminus \{1/2\}^m$ is the "reduced" moment-angle complex.

Connection with moment-angle complexes

More generally

Theorem:

$$K_1 *_{\Delta} \cdots *_{\Delta} K_r \simeq \check{\mathcal{Z}}_{K_1}(W; W_1) \cap \cdots \cap \check{\mathcal{Z}}_{K_r}(W; W_r)$$

where $W = \bigvee_{i=1}^{m} [0, 1]$ is the Kowalski *m*-hedgehog space and W_i are its (m-1)-hedgehog subspaces. The reduced moment-angle complex is obtained by removing the point $(0, 0, \ldots, 0)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Theorem C revisited

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem: Assume that $\{K_i\}_{i=1}^r$ is a family of subcomplexes of $2^{[m]} \cong \Delta_N$ such that

$$W^{m} = \mathcal{Z}_{K_{1}}(W, W_{1}) \cup \cdots \cup \mathcal{Z}_{K_{r}}(W, W_{r}).$$
(3)

Then the space

$$\check{\mathcal{Z}}_{K_1}(W; W_1) \cap \cdots \cap \check{\mathcal{Z}}_{K_r}(W; W_r)$$

is (m - r - 1)-connected.

D. Jojić, I. Nekrasov, G. Panina, R. Živaljević, Alexander r-tuples and Bier complexes, *Publ. Inst. Math. (Beograd) (N.S.)* 104(118) (2018), 1–22.

D. Jojić, W. Marzantowicz, S.T. Vrećica, R.T. Živaljević, Topology of unavoidable complexes, arXiv:1603.08472.

D. Jojić, G. Panina, R. Živaljević, A Tverberg type theorem for collectively unavoidable complexes, arXiv:1812.00366. Israel J. Math.

M. Jelić Milutinović, D. Jojić, M. Timotijević, S. T. Vrećica, R.T. Živaljević. Combinatorics of unavoidable complexes, European J. Combinatorics.

D. Jojić, G. Panina, R. Živaljević, *Splitting necklaces, with constraints*, arXiv:1907.09740 [math.CO].

D. Jojić, G. Panina, S. Vrećica, R. Živaljević. Generalized chessboard complexes and discrete Morse theory. arXiv.