Generalized moment-angle complexes and collectively unavoidable complexes

Rade T. Živaljević
Mathematical Institute SASA, Belgrade

Toric Topology 2019 in Okayama
Okayama University of Science November 18-21, 2019

$\mathcal{Z}_{K}(X, A)$

Let (X, A) be a pair of spaces and let K be an abstract simplicial complex, $K \subseteq 2^{[m]} \quad(m=N+1)$.

The associated Generalized Moment-Angle Complex (K-power) is the space,
$\mathcal{Z}_{K}(X, A)=\operatorname{colim}_{\sigma \in K}(X, A)^{\sigma}=\operatorname{colim}_{\sigma \in K}\left(\prod_{i \in \sigma} X \times \prod_{j \notin \sigma} A\right) \subseteq X^{m}$.

$\mathcal{Z}_{K}(X, A)$

Let (X, A) be a pair of spaces and let K be an abstract simplicial complex, $K \subseteq 2^{[m]} \quad(m=N+1)$.

The associated Generalized Moment-Angle Complex (K-power) is the space,
$\mathcal{Z}_{K}(X, A)=\operatorname{colim}_{\sigma \in K}(X, A)^{\sigma}=\operatorname{colim}_{\sigma \in K}\left(\prod_{i \in \sigma} X \times \prod_{j \notin \sigma} A\right) \subseteq X^{m}$.
For $x=\left(x_{i}\right) \in X^{m}$ let $I_{A}(x):=\left\{i \in[m] \mid x_{i} \notin A\right\}$.
Then

$$
\mathcal{Z}_{K}(X, A)=\left\{x \in X^{m} \mid I_{A}(x) \in K\right\} .
$$

Alexander dual pairs $\left\langle K, K^{\circ}\right\rangle$

$$
\begin{gathered}
K * L=\{A \uplus B \mid A \in K, B \in L\} . \\
K *_{\Delta} L=\{A \uplus B \mid A \in K, B \in L \text { and } A \cap B=\emptyset\} .
\end{gathered}
$$

$K^{\circ}=\left\{A \subset[m] \mid A^{c} \notin K\right\} \quad$ is the Alexander dual of K.
(Recall $\operatorname{Bier}(K)=K *_{\Delta} K^{\circ}$ is the associated Bier sphere.)

Alexander dual pairs $\left\langle K, K^{\circ}\right\rangle$

$$
\begin{gathered}
K * L=\{A \uplus B \mid A \in K, B \in L\} . \\
K *_{\Delta} L=\{A \uplus B \mid A \in K, B \in L \text { and } A \cap B=\emptyset\} .
\end{gathered}
$$

$K^{\circ}=\left\{A \subset[m] \mid A^{c} \notin K\right\} \quad$ is the Alexander dual of K.
(Recall $\operatorname{Bier}(K)=K *_{\Delta} K^{\circ}$ is the associated Bier sphere.)
Proposition: (V. Welker, V. Grujić)

$$
\mathcal{Z}_{K}(X, A) \uplus \mathcal{Z}_{K^{\circ}}\left(X, A^{c}\right)=X^{m} .
$$

Proof: For each $x \in X^{m}$ either $I_{A}(x) \in K$ or $I_{A c}(x) \in K^{\circ}$, but not both! Indeed, $I_{A}(x) \cap I_{A^{c}}(x)=\emptyset$.

Collectively unavoidable complexes

Definition: An ordered r-tuple $\mathcal{K}=\left\langle K_{1}, \ldots, K_{r}\right\rangle$ of subcomplexes of $2^{[m]}$ is collectively r-unavoidable if for each ordered collection $\left(A_{1}, \ldots, A_{r}\right)$ of disjoint sets in $[m]$ there exists i such that $A_{i} \in K_{i}$.

Example: The pair $\left\langle K, K^{\circ}\right\rangle$ is collectively unavoidable. Indeed, if $\left(A_{1}, A_{2}\right)$ is an ordered pair of disjoint sets then either $A_{1} \in K$ or (in the opposite case) $A_{1}^{c} \in K^{\circ}$, which implies $A_{2} \in K^{\circ}$.
A complex $K \subseteq 2^{[r]}$ is by definition r-unavoidable if the r-tuple $\langle K, K, \ldots, K\rangle$ is collectively r-unavoidable.

Collectively unavoidable complexes

and moment-angle complexes

Collectively unavoidable families $\mathcal{K}=\left\langle K_{i}\right\rangle_{i=1}^{r}$ admit a characterization in the language of generalized moment-angle complexes.

Proposition: Let X be a topological space and $\left\{A_{i}\right\}_{i=1}^{r}$ a family of its subspaces which are complementary in the sense that $X=A_{i} \cup A_{j}$ for each $i \neq j$. Then if
$\mathcal{K}=\left\langle K_{i}\right\rangle_{i=1}^{r}=\left\langle K_{1}, \ldots, K_{r}\right\rangle$ is a collectively r-unavoidable family of subcomplexes of the N-dimensional simplex
$\Delta_{N}=2^{[N+1]}$ then

$$
\begin{equation*}
X^{N+1}=\mathcal{Z}_{K_{1}}\left(X, A_{1}\right) \cup \cdots \cup \mathcal{Z}_{K_{r}}\left(X, A_{r}\right) . \tag{1}
\end{equation*}
$$

Conversely, if (1) holds for each X and each family $\left\{A_{i}\right\}_{i=1}^{r}$ of complementary subspaces in X then $\mathcal{K}=\left\langle K_{i}\right\rangle_{i=1}^{r}$ is a collectively r-unavoidable family of simplicial complexes,

Proof of the Proposition

It follows from the definition that

$$
\mathcal{Z}_{K_{i}}\left(X, A_{i}\right)=\left\{x \in X^{N+1} \mid I_{i}(x) \in K_{i}\right\}
$$

where $I_{i}(x):=\left\{j \in[N+1] \mid x_{j} \notin A_{i}\right\}$.
$A_{i} \cup A_{j}=X$ for each $i \neq j$ implies $I_{i}(x) \cap I_{j}(x)=\emptyset$. By
collective unavoidability of $\mathcal{K}=\left\langle K_{i}\right\rangle_{i=1}^{r}$, for each $x \in X^{N+1}$ there exists $i \in[r]$ such that $\left\{I_{i}(x) \in K_{i}\right\}$, and the relation (1) is an immediate consequence.
Conversely, assume that $\mathcal{K}=\left\langle K_{i}\right\rangle_{i=1}^{r}$ is not collectively unavoidable. By definition there exist pairwise disjoint subsets $\left\{I_{j}\right\}_{j=1}^{r}$ of $[N+1]$ such that $I_{i} \notin K_{i}$ for each $i \in[r]$. Let $X=[N+1]$ and let $A_{i}:=[N+1] \backslash I_{i}$. Let $x:[N+1] \rightarrow X$ be the identity map, $\left(x_{i}=i\right.$ for each $\left.i \in[N+1]\right)$. Then,

$$
x \in X^{N+1} \backslash \bigcup_{i=1}^{r} \mathcal{Z}_{K_{i}}\left(X, A_{i}\right)
$$

A canonical family of complementary

sets

Let $W=\bigvee_{j=1}^{m} \ell_{j}=\bigvee_{j=1}^{m}[0,1]$ be the Kowalski m-hedgehog space obtained by gluing m "spikes" along 0 . Let W_{i} are its ($m-1$)-hedgehog subspaces obtained by removing the spike I_{i}.
Then $\left\{W_{i}\right\}_{i=1}^{m}$ is a family of complementary set and if $\mathcal{K}=\left\langle K_{i}\right\rangle_{i=1}^{r}=\left\langle K_{1}, \ldots, K_{r}\right\rangle$ is a collectively r-unavoidable family of complexes then

$$
\begin{equation*}
W^{N+1}=\mathcal{Z}_{K_{1}}\left(W, W_{1}\right) \cup \cdots \cup \mathcal{Z}_{K_{r}}\left(W, W_{r}\right) . \tag{2}
\end{equation*}
$$

Van Kampen-Flores type theorem for collectively unavoidable complexes

Theorem A. $\mathcal{K}=\left\langle K_{i}\right\rangle_{i=1}^{r}=\left\langle K_{1}, \ldots, K_{r}\right\rangle$ is a collectively r-unavoidable family of subcomplexes of the N-dimensional simplex $\Delta_{N}=2^{[N+1]}$, where $r=p^{\nu}$ is a power of a prime.

Assume that there exists $k \geq 1$ such that for each i

$$
\Delta_{N}^{(k-1)} \subseteq K_{i} \subseteq \Delta_{N}^{(k)}
$$

where $\Delta_{N}^{(k)}$ is the k-dimensional skeleton of Δ_{N}.
Suppose that $N \geq(r-1)(d+2)$.

Theorem A conclusion

Then for each continuous map $f: \Delta_{N} \rightarrow \mathbb{R}^{d}$, there exist vertex-disjoint faces $\sigma_{1}, \ldots, \sigma_{r}$ of Δ_{N} such that

$$
f\left(\sigma_{1}\right) \cap \cdots \cap f\left(\sigma_{r}\right) \neq \emptyset
$$

and

$$
\sigma_{1} \in K_{1}, \sigma_{2} \in K_{2}, \ldots, \sigma_{r} \in K_{r}
$$

[JPZ-1] D. Jojić, G. Panina, R. Živaljević, A Tverberg type theorem for collectively unavoidable complexes, Israel J. Math.

Van Kampen-Flores theorem

Theorem: (Van Kampen-Flores 1930s) One can always find two intersecting triangles in each collection of 7 points in four-dimensional euclidean space.

Van Kampen-Flores theorem

Theorem: (Van Kampen-Flores 1930s) One can always find two intersecting triangles in each collection of 7 points in four-dimensional euclidean space.
More generally, for each collection $C \subset \mathbb{R}^{2 d}$ of cardinality $(2 d+3)$ there exist two disjoint sub-collections C_{1} and C_{2} of size $\leq(d+1)$ such that,

$$
\operatorname{conv}\left(C_{1}\right) \cap \operatorname{conv}\left(C_{2}\right) \neq \emptyset
$$

Van Kampen-Flores theorem non-linear version

Theorem: For each continuous map,

$$
f: \Delta_{N} \rightarrow \mathbb{R}^{2 d}
$$

where $N=2 d+2$ and Δ_{N} is an N-dimensional simplex, there exist two disjoint faces σ_{1} and σ_{2} of Δ_{N} such that $\operatorname{dim}\left(\sigma_{i}\right) \leq d$ and

$$
f\left(\sigma_{1}\right) \cap f\left(\sigma_{2}\right) \neq \emptyset
$$

Balanced generalized van Kampen-Flores theorem

Theorem B: Let $r \geq 2$ be a prime power, $d \geq 1$, $N \geq(r-1)(d+2)$, and $r k+s \geq(r-1) d$ for integers $k \geq 0$ and $0 \leq s<r$. Then for every continuous map $f: \Delta_{N} \rightarrow \mathbb{R}^{d}$, there are r pairwise disjoint faces $\sigma_{1}, \ldots, \sigma_{r}$ of Δ_{N} such that $f\left(\sigma_{1}\right) \cap \cdots \cap f\left(\sigma_{r}\right) \neq \emptyset$, with $\operatorname{dim} \sigma_{i} \leq k+1$ for $1 \leq i \leq s$ and $\operatorname{dim} \sigma_{i} \leq k$ for $s<i \leq r$.

Balanced generalized van Kampen-Flores theorem

Theorem B: Let $r \geq 2$ be a prime power, $d \geq 1$, $N \geq(r-1)(d+2)$, and $r k+s \geq(r-1) d$ for integers $k \geq 0$ and $0 \leq s<r$. Then for every continuous map $f: \Delta_{N} \rightarrow \mathbb{R}^{d}$, there are r pairwise disjoint faces $\sigma_{1}, \ldots, \sigma_{r}$ of Δ_{N} such that $f\left(\sigma_{1}\right) \cap \cdots \cap f\left(\sigma_{r}\right) \neq \emptyset$, with $\operatorname{dim} \sigma_{i} \leq k+1$ for $1 \leq i \leq s$ and $\operatorname{dim} \sigma_{i} \leq k$ for $s<i \leq r$.
D. Jojić, S.T. Vrećica, R.T. Živaljević.

Symmetric multiple chessboard complexes and a new theorem of Tverberg type, J. Algebraic Combin., 46 (2017), 15-31.

Balanced generalized van Kampen-Flores theorem

Theorem B: Let $r \geq 2$ be a prime power, $d \geq 1$, $N \geq(r-1)(d+2)$, and $r k+s \geq(r-1) d$ for integers $k \geq 0$ and $0 \leq s<r$. Then for every continuous map $f: \Delta_{N} \rightarrow \mathbb{R}^{d}$, there are r pairwise disjoint faces $\sigma_{1}, \ldots, \sigma_{r}$ of Δ_{N} such that $f\left(\sigma_{1}\right) \cap \cdots \cap f\left(\sigma_{r}\right) \neq \emptyset$, with $\operatorname{dim} \sigma_{i} \leq k+1$ for $1 \leq i \leq s$ and $\operatorname{dim} \sigma_{i} \leq k$ for $s<i \leq r$.
D. Jojić, S.T. Vrećica, R.T. Živaljević.

Symmetric multiple chessboard complexes and a new theorem of Tverberg type, J. Algebraic Combin., 46 (2017), 15-31.

The theorem confirms a conjecture in [BFZ14] Blagojević, Frick, and Ziegler (Conjecture 6.6 in, Tverberg plus constraints, Bull. London Math. Soc., 46 (2014).)

Consequences

(1) Implies positive answer to the 'balanced case' of the problem whether each admissible r-tuple is Tverberg prescribable, ([BFZ14], Question 6.9];

Consequences

(1) Implies positive answer to the 'balanced case' of the problem whether each admissible r-tuple is Tverberg prescribable, ([BFZ14], Question 6.9];
(2) The classical van Kampen-Flores theorem is obtained if d is even, $r=2, s=0$, and $k=\frac{d}{2}$;

Consequences

(1) Implies positive answer to the 'balanced case' of the problem whether each admissible r-tuple is Tverberg prescribable, ([BFZ14], Question 6.9];
(2) The classical van Kampen-Flores theorem is obtained if d is even, $r=2, s=0$, and $k=\frac{d}{2}$;
(3) The sharpened van Kampen-Flores theorem ([BFZ14], Theorem 6.8) corresponds to the case when d is odd, $r=2, s=1$, and $k=\left\lfloor\frac{d}{2}\right\rfloor ;$

Consequences

(1) Implies positive answer to the 'balanced case' of the problem whether each admissible r-tuple is Tverberg prescribable, ([BFZ14], Question 6.9];
(2) The classical van Kampen-Flores theorem is obtained if d is even, $r=2, s=0$, and $k=\frac{d}{2}$;
(3) The sharpened van Kampen-Flores theorem ([BFZ14], Theorem 6.8) corresponds to the case when d is odd, $r=2, s=1$, and $k=\left\lfloor\frac{d}{2}\right\rfloor$;
(4) The case $d=3$ of the 'sharpened van Kampen-Flores theorem' is equivalent to the Conway-Gordon-Sachs theorem which says that the complete graph K_{6} on 6 vertices is 'intrinsically linked';

Consequences

(1) Implies positive answer to the 'balanced case' of the problem whether each admissible r-tuple is Tverberg prescribable, ([BFZ14], Question 6.9];
(2) The classical van Kampen-Flores theorem is obtained if d is even, $r=2, s=0$, and $k=\frac{d}{2}$;
(3) The sharpened van Kampen-Flores theorem ([BFZ14], Theorem 6.8) corresponds to the case when d is odd, $r=2, s=1$, and $k=\left\lfloor\frac{d}{2}\right\rfloor$;
(4) The case $d=3$ of the 'sharpened van Kampen-Flores theorem' is equivalent to the Conway-Gordon-Sachs theorem which says that the complete graph K_{6} on 6 vertices is 'intrinsically linked';
(5) The generalized van Kampen-Flores theorem ([BFZ14], Theorem 6.3), which improves upon earlier results of Sarkaria and Volovikov, follows for $s=0$ and $k=\left\lceil\frac{r-1}{r} d\right\rceil$.

Counterexamples

Theorems A and B are positive results obtained after the fundamental progress leading to counterexamples to the continuous Tverberg-Van Kampen-Flores theorems in the non-prime power with central contributions by:

- I. Mabillard and U. Wagner;
- P.V.M. Blagojević, F. Frick, G. Ziegler;
- M. Özaydin;
- M. Gromov.
A. Skopenkov, A user's guide to the topological Tverberg Conjecture, Russian Math. Surveys, 73:2 (2018), 323-353. Earlier version: arXiv:1605.05141v4.

For the improved counterexamples see also

- S. Avvakumov, R. Karasev and A. Skopenkov, (2019).

Proofs of Theorems A and B

A central role is played by high connectivity results as illustrated by:
Theorem C: Suppose that $\mathcal{K}=\left\langle K_{i}\right\rangle_{i=1}^{r}=\left\langle K_{1}, \ldots, K_{r}\right\rangle$ is a collectively r-unavoidable family of subcomplexes of $2^{[m]}$. Then the associated deleted join

$$
\operatorname{Del} \operatorname{Join}(\mathcal{K})=K_{1} *_{\Delta} K_{2} *_{\Delta} \cdots *_{\Delta} K_{r}
$$

is $(m-r-1)$-connected.
D. Jojić, I. Nekrasov, G. Panina, R. Živaljević, Alexander r-tuples and Bier complexes, Publ. Inst. Math. (Beograd) (N.S.) 104(118) (2018), 1-22.

Connection with moment-angle complexes

Theorem:

$$
\operatorname{Bier}(K):=K *_{\Delta} K^{\circ} \simeq \breve{\mathcal{Z}}_{K}(X ; A) \cap \breve{\mathcal{Z}}_{K^{\circ}}(X ; B)
$$

where $X=[0,1], A=[0,1 / 2], B=[1 / 2,1]$ and $\breve{\mathcal{Z}}_{K}(X, A):=\mathcal{Z}_{K}(X, A) \backslash\{1 / 2\}^{m}$ is the "reduced" moment-angle complex.

Connection with moment-angle complexes

More generally

Theorem:

$$
K_{1} *_{\Delta} \cdots *_{\Delta} K_{r} \simeq \breve{\mathcal{Z}}_{K_{1}}\left(W ; W_{1}\right) \cap \cdots \cap \breve{\mathcal{Z}}_{K_{r}}\left(W ; W_{r}\right)
$$

where $W=\bigvee_{i=1}^{m}[0,1]$ is the Kowalski m-hedgehog space and W_{i} are its $(m-1)$-hedgehog subspaces. The reduced moment-angle complex is obtained by removing the point $(0,0, \ldots, 0)$.

Theorem C revisited

Theorem: Assume that $\left\{K_{i}\right\}_{i=1}^{r}$ is a family of subcomplexes of $2^{[m]} \cong \Delta_{N}$ such that

$$
\begin{equation*}
W^{m}=\mathcal{Z}_{K_{1}}\left(W, W_{1}\right) \cup \cdots \cup \mathcal{Z}_{K_{r}}\left(W, W_{r}\right) \tag{3}
\end{equation*}
$$

Then the space

$$
\breve{\mathcal{Z}}_{K_{1}}\left(W ; W_{1}\right) \cap \cdots \cap \breve{\mathcal{Z}}_{K_{r}}\left(W ; W_{r}\right)
$$

is $(m-r-1)$-connected.
D. Jojić, I. Nekrasov, G. Panina, R. Živaljević, Alexander r-tuples and Bier complexes, Publ. Inst. Math. (Beograd) (N.S.) 104(118) (2018), 1-22.
D. Jojić, W. Marzantowicz, S.T. Vrećica, R.T. Živaljević, Topology of unavoidable complexes, arXiv:1603.08472.
D. Jojić, G. Panina, R. Živaljević, A Tverberg type theorem for collectively unavoidable complexes, arXiv:1812.00366. Israel J. Math.
M. Jelić Milutinović, D. Jojić, M. Timotijević, S. T. Vrećica, R.T. Živaljević. Combinatorics of unavoidable complexes, European J. Combinatorics.
D. Jojić, G. Panina, R. Živaljević, Splitting necklaces, with constraints, arXiv:1907.09740 [math.CO].
D. Jojić, G. Panina, S. Vrećica, R. Živaljević. Generalized chessboard complexes and discrete Morse theory. arXiv.

