Two enriched poset polytopes

Akiyoshi Tsuchiya (University of Tokyo)

Toric Topology 2019 in Okayama
Okayama University of Science
November 18 - November 21, 2019
joint work with Hidefumi Ohsugi (Kwansei Gakuin University)

This talk is based on

- H. Ohsugi and A. Tsuchiya, Enriched chain polytopes, Israel J. Math., to appear.
- H. Ohsugi and A. Tsuchiya, Enriched order polytopes and enriched Hibi rings, arXiv:1906.04719.

1. Two poset polytopes
2. Two enriched poset polytopes
3. Gal Conjecture

This slide was uploaded in my researchmap page. If you need, please google "researchmap Akiyoshi Tsuchiya".

Ehrhart polynomial

$\mathcal{P} \subset \mathbb{R}^{d}$: a lattice polytope of dimension d
(i.e., a convex polytope all of whose vertices are in \mathbb{Z}^{d}) $m \mathcal{P}=\{m \mathbf{x}: \mathbf{x} \in \mathcal{P}\}$: the m th dilated polytope of \mathcal{P} $L_{\mathcal{P}}(m):=\left|m \mathcal{P} \cap \mathbb{Z}^{d}\right|:$ the Ehrhart polynomial of \mathcal{P}

Theorem (Ehrhart)
$L_{\mathcal{P}}(m)$ is a polynomial in m of degree d.

Remark

- The constant term of $L_{\mathcal{P}}(m)$ is equal to 1 ;
- The leading coefficient of $L_{\mathcal{P}}(m)$ is equal to the volume of \mathcal{P};
- The second leading coefficient of $L_{\mathcal{P}}(m)$ is equal to the half of the relative volume of the boundary of \mathcal{P};
- $\left|\operatorname{int}(m \mathcal{P}) \cap \mathbb{Z}^{d}\right|=(-1)^{d} L_{\mathcal{P}}(-m)$.

Two poset polytopes
$\left(P,<_{P}\right)$: a poset on $[d]:=\{1, \ldots, d\}$.

Definition (Stanley)

The order polytope of P is

$$
\mathcal{O}_{P}:=\left\{\mathbf{x} \in[0,1]^{d}: x_{i} \leq x_{j} \text { if } i<_{P} j\right\} .
$$

The chain polytope of P is
$\mathcal{C}_{P}:=\left\{\mathbf{x} \in[0,1]^{d}: x_{i_{1}}+\cdots+x_{i_{r}} \leq 1\right.$ if $i_{1}<_{P} \cdots<_{P} i_{r}$ is a chain in $\left.P\right\}$.

Proposition (Stanley)

\mathcal{O}_{P} and \mathcal{C}_{P} are lattice polytopes of dimension d.
Remark
\mathcal{O}_{P} and $\mathcal{O}_{\bar{P}}$ are always isomorphic, where \bar{P} is the dual poset of P.

Vertices of \mathcal{O}_{P} and \mathcal{C}_{P}

$\left(P,<_{P}\right)$: a poset on $[d]$.

- $F \subset[d]$ is a filter of P if for any $x \in F$ and $y \in P$, it follows that $x<_{P} y \Rightarrow y \in F$.
- $A \subset[d]$ is an antichain of P if for any $x, y \in A$ with $x \neq y, x$ and y are incomparable.
$\mathcal{F}(P)$: the set of filters of P.
$\mathcal{A}(P)$: the set of antichains of P.
- For $X \subset[d]$, set $\mathbf{e}_{X}:=\sum_{i \in X} \mathbf{e}_{i}$, where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{d}$ are the standard basis of \mathbb{R}^{d}. In particular, $\mathbf{e}_{\emptyset}=\mathbf{0}$.

Theorem (Stanley)
The set of vertices of \mathcal{O}_{P} is $\left\{\mathbf{e}_{F}: F \in \mathcal{F}(P)\right\}$.
The set of vertices of \mathcal{C}_{P} is $\left\{\mathbf{e}_{A}: A \in \mathcal{A}(P)\right\}$.

Example

$$
P= \begin{cases}2 & \mathcal{F}(P)=\{\emptyset,\{2\},\{1,2\}\} \\ 1 & \mathcal{A}(P)=\{\emptyset,\{1\},\{2\}\}\end{cases}
$$

P-partition

$\left(P,<_{P}\right)$: a naturally labeled poset on [d], i.e., $i<_{P} j \Rightarrow i<j$.
Definition
A map $f: P \rightarrow \mathbb{Z}_{\geq 0}$ is a P-partition if for any $i<_{P} j$,

$$
f(i) \leq f(j)
$$

$\left(P,<_{P}\right)$: a naturally labeled poset on [d].
Theorem (Stanley)
$L_{\mathcal{O}_{P}}(m)=L_{\mathcal{C}_{P}}(m)=\mid\{f: P$-partitions with $f(i) \leq m\} \mid$.
$\Omega_{P}(m):=\mid\{f: P$-partitions with $1 \leq f(i) \leq m\} \mid$
: the order polynomial of P
G_{P} : the comparability graph of P, i.e., a simple graph on $[d]$ such that $\{x, y\}$ is an edge if and only if $x<_{P} y$ or $x>_{P} y$.

Corollary
$\Omega_{P}(m)$ depends only on G_{P}.

Enriched P-partition

$\left(P,<_{P}\right)$: a naturally labeled poset on $[d]$.
Definition (Stembridge)
A map $f: P \rightarrow \mathbb{Z} \backslash\{0\}$ is an enriched P-parition if for any $i<_{P} j$,

- $|f(i)| \leq|f(j)| ;$
- $|f(i)|=|f(j)| \Rightarrow f(j)>0$.

Left enriched P-partition

$\left(P,<_{P}\right)$: a naturally labeled poset on [d].
Definition (Petersen)
A map $f: P \rightarrow \mathbb{Z}$ is a left enriched P-parition if for any $i<_{P} j$,

- $|f(i)| \leq|f(j)| ;$
- $|f(i)|=|f(j)| \Rightarrow f(j) \geq 0$.

Signed filters and singed antichains
$\left(P,<_{P}\right)$: a poset on $[d]$.

$$
\begin{gathered}
\mathcal{F}^{(e)}(P):=\left\{(F, \varepsilon) \in \mathcal{F}(P) \times\{0, \pm 1\}^{d}: \varepsilon_{i}=\left\{\begin{array}{ll}
\pm 1 & (i \in \min (F)) \\
1 & (i \in F \backslash \min (F)) \\
0 & (i \notin F)
\end{array}\right\}\right. \\
\mathcal{A}^{(e)}(P):=\left\{(A, \varepsilon) \in \mathcal{A}(P) \times\{0, \pm 1\}^{d}: \varepsilon_{i}=\left\{\begin{array}{ll}
\pm 1 & (i \in A) \\
0 & (i \notin A)
\end{array}\right\}\right.
\end{gathered}
$$

Remark
If P is naturally labeled, then

$$
\mathcal{F}(P) \stackrel{1: 1}{\longleftrightarrow}\{f: P \text {-partition with } f(i) \leq 1\}
$$

$\mathcal{F}^{(e)}(P) \stackrel{1: 1}{\longleftrightarrow}\{f$: left enriched P-partition with $|f(i)| \leq 1\}$

Two enriched poset polytopes

$\left(P,<_{P}\right)$: a poset on $[d]$.

- For $X \subset[d]$ and $\varepsilon \in\{0, \pm 1\}^{d}$, set $\mathbf{e}_{X}^{\varepsilon}:=\sum_{i \in X} \varepsilon_{i} \mathbf{e}_{i}$.

Definition (Ohsugi-T)
The enriched order polytope of P is

$$
\mathcal{O}_{P}^{(e)}:=\operatorname{conv}\left\{\mathbf{e}_{F}^{\varepsilon}:(F, \varepsilon) \in \mathcal{F}^{(e)}(P)\right\} .
$$

The enriched chain polytope of P is

$$
\mathcal{C}_{P}^{(e)}:=\operatorname{conv}\left\{\mathbf{e}_{A}^{\varepsilon}:(A, \varepsilon) \in \mathcal{A}^{(e)}(P)\right\} .
$$

Remark

- $\mathbf{e}_{F}^{\varepsilon}\left(\right.$ resp. $\left.\mathbf{e}_{A}^{\varepsilon}\right)$ is not always a vertex of $\mathcal{O}_{P}^{(e)}\left(\right.$ resp. $\left.\mathcal{C}_{P}^{(e)}\right)$.
- $\mathcal{O}_{P}^{(e)}$ and $\mathcal{O}_{\bar{P}}^{(e)}$ are not always isomorphic.

Example

$$
P= \begin{cases}2 & \mathcal{F}(P)=\{\emptyset,\{2\},\{1,2\}\} \\ 1 & \mathcal{A}(P)=\{\emptyset,\{1\},\{2\}\}\end{cases}
$$

Left enriched order polynomial
$\left(P,<_{P}\right)$: a naturally labeled poset on $[d]$.
$\Omega_{P}^{(\ell)}(m):=\mid\{f$: left enriched P-partitions with $|f(i)| \leq m\} \mid$
: the left enriched order polynomial of P.
Theorem (Ohsugi-T)

$$
L_{\mathcal{O}_{P}^{(e)}}(m)=L_{\mathcal{C}_{P}^{(e)}}(m)=\Omega_{P}^{(\ell)}(m) .
$$

Remark

For a (not necessarily naturally labeled) poset P on $[d]$,

$$
L_{\mathcal{O}_{P}^{(e)}}(m)=L_{\mathcal{C}_{P}^{(e)}}(m)=L_{\mathcal{O}_{\frac{1}{P}}^{(e)}}(m)
$$

Corollary
$\Omega_{P}^{(\ell)}(m)$ depends only on G_{P}.

Palindromic polynomials and γ-positivity
$f(t)=\sum_{i=0}^{d} a_{i} t^{i} \in \mathbb{Z}_{>0}[t]$: a palindromic polynomial

$$
\text { i.e., } a_{i}=a_{d-i} \text { for any } 1 \leq i \leq\lfloor d / 2\rfloor
$$

Then there exists a unique expression

$$
f(t)=\sum_{i=0}^{\lfloor d / 2\rfloor} \gamma_{i} t^{i}(1+t)^{d-2 i}
$$

$\gamma(t):=\sum_{i=0}^{\lfloor d / 2\rfloor} \gamma_{t} t^{i} \in \mathbb{Z}[t]$ is called the γ-polynomial of $f(t)$.
$(\mathrm{RR}) f(t)$ is real-rooted if all roots of $f(t)$ are real.
(GP) $f(t)$ is γ-positive if $\gamma_{i} \geq 0$ for all i.
(UN) $f(t)$ is unimodal if $a_{0} \leq \cdots \leq a_{k} \geq \cdots \geq a_{d}$ with some k. In general, $(\mathrm{RR}) \Rightarrow(\mathrm{GP}) \Rightarrow(\mathrm{UN})$. If $f(t)$ is γ-positive, then $f(t)$ is real-rooted $\Longleftrightarrow \gamma(t)$ is real-rooted

Gal Conjecture

A simplicial complex is called flag if for any minimall non-face \mathcal{F}, $|\mathcal{F}| \leq 2$.
Conjecture (Real Root Conjecture, disproved)
The h-polynomial of a flag triangulation of a sphere is real-rooted.
Gal found a counterexample for the Real Root Conjecture.

Conjecture (Gal Conjecture)

The h-polynomial of a flag triangulation of a sphere is γ-positive.

Conjecture (Nevo-Petersen Conjecture)

The γ-polynomial of the h-polynomial of a flag triangulation of a sphere coincides with the f-polynomial of a flag simplicial complex.

Ehrhart series and h^{*}-polynomials
$\mathcal{P} \subset \mathbb{R}^{d}:$ a lattice polytopeof dimension d
$\operatorname{Ehr}(\mathcal{P}, t):=1+\sum_{m=1}^{\infty} L_{\mathcal{P}}(m) t^{m}$: the Ehrhart series of \mathcal{P}.
$(1-t)^{d+1} \operatorname{Ehr}(\mathcal{P}, t)=\sum_{i=0}^{d} h_{i}^{*} t^{i}=: h^{*}(\mathcal{P}, t)$: the h^{*}-polynomial of \mathcal{P}.

Remark

- each $h_{i}^{*} \geq 0$ (Stanley).
- $h_{0}^{*}=1, h_{1}^{*}=\left|\mathcal{P} \cap \mathbb{Z}^{d}\right|-(d+1)$ and $h_{d}^{*}=\left|\operatorname{int}(\mathcal{P}) \cap \mathbb{Z}^{d}\right|$.
- $h_{0}^{*}+\cdots+h_{d}^{*}$ equals the normalized volume of \mathcal{P}.

P-Eulerian polynomials

$\left(P,<_{P}\right)$: a naturally labeled poset on [d].
A permutation $\pi=\pi_{1} \cdots \pi_{d}$ is called a linear extension of P if $i<_{p} j \Rightarrow \pi_{i}<\pi_{j}$.
$\mathcal{L}(P)$: the set of linear extensions of P.
For $\pi \in \mathcal{L}(P)$, set

$$
\operatorname{des}(\pi):=\left|\left\{1 \leq i \leq d-1: \pi_{i}>\pi_{i+1}\right\}\right| .
$$

$W_{P}(t):=\sum_{\pi \in \mathcal{L}(P)} t^{\operatorname{des}(\pi)}$: the P-Eulerian polynomial.
Theorem (Stanley)

$$
h^{*}\left(\mathcal{O}_{P}, t\right)=h^{*}\left(\mathcal{C}_{P}, t\right)=W_{P}(t)
$$

Palindromic P-Eulerian polynomials

Theorem (Hibi)

$h^{*}\left(\mathcal{O}_{P}, t\right)$ and $h^{*}\left(\mathcal{C}_{P}, t\right)$ are palindromic if and only if P is pure, i.e., every maximal chain of P has a same length.

Theorem (Reiner-Welker)
If P is pure, then $h^{*}\left(\mathcal{O}_{P}, t\right)$ and $h^{*}\left(\mathcal{C}_{P}, t\right)$ coincide with the h-polynomial of a flag triangulation of a sphere.

Theorem (Brändén)
If P is pure, then $h^{*}\left(\mathcal{O}_{P}, t\right)$ and $h^{*}\left(\mathcal{C}_{P}, t\right)$ are γ-positive.
Conjecture (Stanley)
$h^{*}\left(\mathcal{O}_{P}, t\right)$ and $h^{*}\left(\mathcal{C}_{P}, t\right)$ are unimodal.

Left peak polynomials

$(P,<p)$: a naturally labeled poset on $[d]$.

Theorem (Ohsugi-T)

$h^{*}\left(\mathcal{O}_{P}^{(e)}, t\right)$ and $h^{*}\left(\mathcal{C}_{P}^{(e)}, t\right)$ always coincide with the h-polynomial of a flag triangulation of a sphere.
For $\pi \in \mathcal{L}(P)$ with $\pi_{0}=0$, set

$$
\operatorname{peak}^{(\ell)}(\pi):=\left|\left\{1 \leq i \leq d-1: \pi_{i-1}<\pi_{i}>\pi_{i+1}\right\}\right| .
$$

$W_{P}^{(\ell)}(t):=\sum_{\pi \in \mathcal{L}(P)} t^{\text {peak }}{ }^{(\ell)}(\pi)$: the left peak polynomial of P.
Theorem (Ohsugi-T, Petersen, Stembridge)
The γ-polynomials of $h^{*}\left(\mathcal{O}_{P}^{(e)}, t\right)$ and $h^{*}\left(\mathcal{C}_{P}^{(e)}, t\right)$ equal $W_{P}^{(\ell)}(4 t)$.
Theorem (Nevo-Petersen, Ohsugi-T)
$W_{P}^{(\ell)}(4 t)$ coincides with the f-polynomial of a flag simplicial complex.

