Two enriched poset polytopes

Akiyoshi Tsuchiya (University of Tokyo)

Toric Topology 2019 in Okayama Okayama University of Science November 18 – November 21, 2019

joint work with Hidefumi Ohsugi (Kwansei Gakuin University)

0 0 0 0

This talk is based on

- H. Ohsugi and A. Tsuchiya, Enriched chain polytopes, *Israel J. Math.*, to appear.
- H. Ohsugi and A. Tsuchiya, Enriched order polytopes and enriched Hibi rings, arXiv:1906.04719.

1. Two poset polytopes

2. Two enriched poset polytopes

3. Gal Conjecture

This slide was uploaded in my researchmap page. If you need, please google "researchmap Akiyoshi Tsuchiya".

Ehrhart polynomial

 $\mathcal{P} \subset \mathbb{R}^d$: a lattice polytope of dimension d(i.e., a convex polytope all of whose vertices are in \mathbb{Z}^d) $m\mathcal{P} = \{m\mathbf{x} : \mathbf{x} \in \mathcal{P}\}$: the *m*th dilated polytope of \mathcal{P} $L_{\mathcal{P}}(m) := |m\mathcal{P} \cap \mathbb{Z}^d|$: the Ehrhart polynomial of \mathcal{P}

Theorem (Ehrhart)

 $L_{\mathcal{P}}(m)$ is a polynomial in m of degree d.

Remark

- The constant term of $L_{\mathcal{P}}(m)$ is equal to 1;
- The leading coefficient of $L_{\mathcal{P}}(m)$ is equal to the volume of \mathcal{P} ;
- The second leading coefficient of L_P(m) is equal to the half of the relative volume of the boundary of P;

 $\circ |\operatorname{int}(m\mathcal{P}) \cap \mathbb{Z}^d| = (-1)^d L_{\mathcal{P}}(-m).$

Two poset polytopes

 $(P, <_P)$: a poset on $[d] := \{1, \ldots, d\}$. Definition (Stanley) The order polytope of P is

$$\mathcal{O}_P := \{ \mathbf{x} \in [0, 1]^d : x_i \le x_j \text{ if } i <_P j \}.$$

The chain polytope of P is

 $\mathcal{C}_P := \{ \mathbf{x} \in [0,1]^d : x_{i_1} + \dots + x_{i_r} \le 1 \text{ if } i_1 <_P \dots <_P i_r \text{ is a chain in } P \}.$

Proposition (Stanley) \mathcal{O}_P and \mathcal{C}_P are lattice polytopes of dimension d.

Remark \mathcal{O}_P and $\mathcal{O}_{\overline{P}}$ are always isomorphic, where \overline{P} is the dual poset of P.

0 0

Vertices of \mathcal{O}_P and \mathcal{C}_P

 $(P, <_P)$: a poset on [d].

◦ $F \subset [d]$ is a filter of P if for any $x \in F$ and $y \in P$, it follows that $x <_P y \Rightarrow y \in F$.

• $A \subset [d]$ is an antichain of P if for any $x, y \in A$ with $x \neq y$, x and y are incomparable.

 $\mathcal{F}(P)$: the set of filters of P.

 $\mathcal{A}(P)$: the set of antichains of P.

• For $X \subset [d]$, set $\mathbf{e}_X := \sum_{i \in X} \mathbf{e}_i$, where $\mathbf{e}_1, \ldots, \mathbf{e}_d$ are the standard basis of \mathbb{R}^d . In particular, $\mathbf{e}_{\emptyset} = \mathbf{0}$.

Theorem (Stanley)

The set of vertices of \mathcal{O}_P is $\{\mathbf{e}_F : F \in \mathcal{F}(P)\}$. The set of vertices of \mathcal{C}_P is $\{\mathbf{e}_A : A \in \mathcal{A}(P)\}$.

P-partition

 $(P, <_P)$: a naturally labeled poset on [d], i.e., $i <_P j \Rightarrow i < j$. Definition A map $f: P \to \mathbb{Z}_{\geq 0}$ is a *P*-partition if for any $i <_P j$,

 $f(i) \le f(j).$

0 0 0 0 0

 $(P, <_P)$: a naturally labeled poset on [d]. Theorem (Stanley)

 $L_{\mathcal{O}_P}(m) = L_{\mathcal{C}_P}(m) = |\{f : P \text{-partitions with } f(i) \le m\}|.$

 $\begin{array}{l} \Omega_P(m) := |\{f: \overline{P}\text{-partitions with } 1 \leq f(i) \leq m\}|\\ \quad : \text{ the order polynomial of } P\\ G_P: \text{ the comparability graph of } P, \text{ i.e., a simple graph on } [d]\\ \quad \text{ such that } \{x,y\} \text{ is an edge if and only if } x <_P y \text{ or } x >_P y. \end{array}$

Corollary $\Omega_P(m)$ depends only on G_P .

Enriched *P*-partition

 $(P, <_P)$: a naturally labeled poset on [d]. **Definition (Stembridge)** A map $f: P \to \mathbb{Z} \setminus \{0\}$ is an enriched *P*-parition if for any $i <_P j$, $\circ |f(i)| \le |f(j)|$; $\circ |f(i)| = |f(j)| \Rightarrow f(j) > 0$.

Left enriched *P*-partition

 $(P, <_P)$: a naturally labeled poset on [d]. **Definition (Petersen)** A map $f: P \to \mathbb{Z}$ is a left enriched *P*-parition if for any $i <_P j$, $\circ |f(i)| \le |f(j)|$; $\circ |f(i)| = |f(j)| \Rightarrow f(j) \ge 0$.

Signed filters and singed antichains $(P, <_P)$: a poset on [d].

$$\mathcal{F}^{(e)}(P) := \begin{cases} (F,\varepsilon) \in \mathcal{F}(P) \times \{0,\pm1\}^d : \varepsilon_i = \begin{cases} \pm 1 & (i \in \min(F)) \\ 1 & (i \in F \setminus \min(F)) \\ 0 & (i \notin F) \end{cases}$$
$$\mathcal{A}^{(e)}(P) := \begin{cases} (A,\varepsilon) \in \mathcal{A}(P) \times \{0,\pm1\}^d : \varepsilon_i = \begin{cases} \pm 1 & (i \in A) \\ 0 & (i \notin A) \end{cases} \end{cases}$$

Remark If *P* is naturally labeled, then

 $\mathcal{F}(P) \xleftarrow{1:1} \{f: P \text{-partition with } \overline{f(i) \leq 1}\}$

 $\mathcal{F}^{(e)}(P) \xleftarrow{1:1} \{ f : \text{left enriched } P \text{-partition with } |f(i)| \leq 1 \}$

Two enriched poset polytopes

 (P, \leq_P) : a poset on [d]. \circ For $X \subset [d]$ and $\varepsilon \in \{0, \pm 1\}^d$, set $\mathbf{e}_X^{\varepsilon} := \sum_{i \in X} \varepsilon_i \mathbf{e}_i$. **Definition (Ohsugi-T)** The enriched order polytope of P is

$$\mathcal{O}_P^{(e)} := \operatorname{conv}\{\mathbf{e}_F^{\varepsilon} : (F, \varepsilon) \in \mathcal{F}^{(e)}(P)\},\$$

The enriched chain polytope of P is

$$\mathcal{C}_P^{(e)} := \operatorname{conv}\{\mathbf{e}_A^{\varepsilon} : (A, \varepsilon) \in \mathcal{A}^{(e)}(P)\}$$

Remark

 $\circ \mathbf{e}_{F}^{\varepsilon}$ (resp. $\mathbf{e}_{A}^{\varepsilon}$) is not always a vertex of $\mathcal{O}_{P}^{(e)}$ (resp. $\mathcal{C}_{P}^{(e)}$). $\circ \mathcal{O}_{P}^{(e)}$ and $\mathcal{O}_{\overline{P}}^{(e)}$ are not always isomorphic.

Left enriched order polynomial

 $\begin{array}{l} (P,<_P): \text{ a naturally labeled poset on } [d].\\ \Omega_P^{(\ell)}(m):=|\{f: \text{left enriched P-partitions with } |f(i)|\leq m\}|\\ : \text{ the left enriched order polynomial of P.} \end{array}$

Theorem (Ohsugi-T)

$$L_{\mathcal{O}_P^{(e)}}(m) = L_{\mathcal{C}_P^{(e)}}(m) = \Omega_P^{(\ell)}(m).$$

Remark

For a (not necessarily naturally labeled) poset P on [d],

$$L_{\mathcal{O}_{P}^{(e)}}(m) = L_{\mathcal{C}_{P}^{(e)}}(m) = L_{\mathcal{O}_{\overline{P}}^{(e)}}(m).$$

Corollary

 $\Omega_P^{(\ell)}(m)$ depends only on G_P .

Palindromic polynomials and γ -positivity

 $f(t) = \sum_{i=0}^{d} a_i t^i \in \mathbb{Z}_{>0}[t]$: a palindromic polynomial i.e., $a_i = a_{d-i}$ for any $1 \le i \le \lfloor d/2 \rfloor$ Then there exists a unique expression

$$f(t) = \sum_{i=0}^{\lfloor d/2 \rfloor} \gamma_i t^i (1+t)^{d-2i}$$

$$\begin{split} \gamma(t) &:= \sum_{i=0}^{\lfloor d/2 \rfloor} \gamma_i t^i \in \mathbb{Z}[t] \text{ is called the } \gamma\text{-polynomial of } f(t). \\ (\text{RR}) \ f(t) \text{ is real-rooted if all roots of } f(t) \text{ are real.} \\ (\text{GP}) \ f(t) \text{ is } \gamma\text{-positive if } \gamma_i \geq 0 \text{ for all } i. \\ (\text{UN}) \ f(t) \text{ is unimodal if } a_0 \leq \cdots \leq a_k \geq \cdots \geq a_d \text{ with some } k. \\ \text{In general, } (\text{RR}) \Rightarrow (\text{GP}) \Rightarrow (\text{UN}). \text{ If } f(t) \text{ is } \gamma\text{-positive, then} \\ f(t) \text{ is real-rooted } \iff \gamma(t) \text{ is real-rooted} \end{split}$$

0 0 0 0 0

Gal Conjecture

A simplicial complex is called flag if for any minimall non-face \mathcal{F} , $|\mathcal{F}| \leq 2$.

Conjecture (Real Root Conjecture, disproved) *The h-polynomial of a flag triangulation of a sphere is real-rooted.* Gal found a counterexample for the Real Root Conjecture. **Conjecture (Gal Conjecture)** *The h-polynomial of a flag triangulation of a sphere is γ-positive.*

Conjecture (Nevo-Petersen Conjecture) The γ -polynomial of the h-polynomial of a flag triangulation of a sphere coincides with the f-polynomial of a flag simplicial complex.

Ehrhart series and h^* -polynomials

$$\begin{split} \mathcal{P} \subset \mathbb{R}^d : \text{ a lattice polytopeof dimension } d \\ \mathsf{Ehr}(\mathcal{P},t) &:= 1 + \sum_{m=1}^\infty L_\mathcal{P}(m) t^m : \text{ the Ehrhart series of } \mathcal{P}. \\ (1-t)^{d+1} \mathrm{Ehr}(\mathcal{P},t) &= \sum_{i=0}^d h_i^* t^i =: h^*(\mathcal{P},t) : \text{ the } h^*\text{-polynomial of } \mathcal{P}. \end{split}$$

Remark

each h_i^{*} ≥ 0 (Stanley).
h₀^{*} = 1, h₁^{*} = |P ∩ Z^d| - (d + 1) and h_d^{*} = |int(P) ∩ Z^d|.
h₀^{*} + ··· + h_d^{*} equals the normalized volume of P.

*P***-Eulerian polynomials**

 $(P, <_P)$: a naturally labeled poset on [d]. A permutation $\pi = \pi_1 \cdots \pi_d$ is called a linear extension of P if $i <_P j \Rightarrow \pi_i < \pi_j.$ $\mathcal{L}(P)$: the set of linear extensions of P. For $\pi \in \mathcal{L}(P)$, set $des(\pi) := |\{1 \le i \le d - 1 : \pi_i > \pi_{i+1}\}|.$ $W_P(t) := \sum_{\pi \in \mathcal{L}(P)} t^{\operatorname{des}(\pi)}$: the *P*-Eulerian polynomial. Theorem (Stanley)

$$h^*(\mathcal{O}_P, t) = h^*(\mathcal{C}_P, t) = W_P(t).$$

Palindromic *P*-Eulerian polynomials

Theorem (Hibi) $h^*(\mathcal{O}_P, t)$ and $h^*(\mathcal{C}_P, t)$ are palindromic if and only if P is pure, i.e., every maximal chain of P has a same length.

Theorem (Reiner-Welker)

If P is pure, then $h^*(\mathcal{O}_P, t)$ and $h^*(\mathcal{C}_P, t)$ coincide with the *h*-polynomial of a flag triangulation of a sphere.

Theorem (Brändén)

If P is pure, then $h^*(\mathcal{O}_P, t)$ and $h^*(\mathcal{C}_P, t)$ are γ -positive.

Conjecture (Stanley) $h^*(\mathcal{O}_P, t)$ and $h^*(\mathcal{C}_P, t)$ are unimodal.

Left peak polynomials

 $(P, <_P)$: a naturally labeled poset on [d]. Theorem (Ohsugi-T) $h^*(\mathcal{O}_{P}^{(e)},t)$ and $h^{*}(\mathcal{C}_{P}^{(e)},t)$ always coincide with the h-polynomial of a flag triangulation of a sphere. For $\pi \in \mathcal{L}(P)$ with $\pi_0 = 0$, set $\operatorname{peak}^{(\ell)}(\pi) := |\{1 \le i \le d - 1 : \pi_{i-1} < \pi_i > \pi_{i+1}\}|.$ $W_P^{(\ell)}(t) := \sum_{\pi \in \mathcal{L}(P)} t^{\operatorname{peak}^{(\ell)}(\pi)}$: the left peak polynomial of P. Theorem (Ohsugi-T, Petersen, Stembridge) The γ -polynomials of $h^*(\mathcal{O}_P^{(e)},t)$ and $h^*(\mathcal{C}_P^{(e)},t)$ equal $W_P^{(\ell)}(4t)$. Theorem (Nevo-Petersen, Ohsugi-T) $W_{P}^{(\ell)}(4t)$ coincides with the *f*-polynomial of a flag simplicial complex.

0 0 0 0 0