Loop homology of moment-angle-complexes and the Golod property of face rings (based on j.ws. with V.Buchstaber and T.Panov)

Ivan Limonchenko

Higher School of Economics
Moscow, Russia ilimonchenko@hse.ru
"Toric Topology 2019 in Okayama", November 19, 2019
Okayama, Japan

Polyhedral products

Definition

Suppose $(\mathbf{X}, \mathbf{A})=\left\{\left(X_{i}, A_{i}\right)\right\}_{i=1}^{m}$ is a set of topological pairs and K is a simplicial complex on the vertex set $[m]=\{1, \ldots, m\}$.

Polyhedral products

Definition

Suppose $(\mathbf{X}, \mathbf{A})=\left\{\left(X_{i}, A_{i}\right)\right\}_{i=1}^{m}$ is a set of topological pairs and K is a simplicial complex on the vertex set $[m]=\{1, \ldots, m\}$. A polyhedral product of (\mathbf{X}, \mathbf{A}) over K is a topological space

$$
(\mathbf{X}, \mathbf{A})^{K}=\bigcup_{I \in K} \prod_{i \in I} Y_{i}
$$

where $Y_{i}=X_{i}$ if $i \in I$, and $Y_{i}=A_{i}$ if $i \notin I$.

Polyhedral products

Definition

Suppose $(\mathbf{X}, \mathbf{A})=\left\{\left(X_{i}, A_{i}\right)\right\}_{i=1}^{m}$ is a set of topological pairs and K is a simplicial complex on the vertex set $[m]=\{1, \ldots, m\}$. A polyhedral product of (\mathbf{X}, \mathbf{A}) over K is a topological space

$$
(\mathbf{X}, \mathbf{A})^{K}=\bigcup_{I \in K} \prod_{i \in I} Y_{i}
$$

where $Y_{i}=X_{i}$ if $i \in I$, and $Y_{i}=A_{i}$ if $i \notin I$.
A moment-angle-complex of K is $\mathcal{Z}_{K}=\left(\mathbb{D}^{2}, \mathbb{S}^{1}\right)^{K}$.

Polyhedral products

Definition

Suppose $(\mathbf{X}, \mathbf{A})=\left\{\left(X_{i}, A_{i}\right)\right\}_{i=1}^{m}$ is a set of topological pairs and K is a simplicial complex on the vertex set $[m]=\{1, \ldots, m\}$.
A polyhedral product of (\mathbf{X}, \mathbf{A}) over K is a topological space

$$
(\mathbf{X}, \mathbf{A})^{K}=\bigcup_{I \in K} \prod_{i \in I} Y_{i}
$$

where $Y_{i}=X_{i}$ if $i \in I$, and $Y_{i}=A_{i}$ if $i \notin I$.
A moment-angle-complex of K is $\mathcal{Z}_{K}=\left(\mathbb{D}^{2}, \mathbb{S}^{1}\right)^{K}$.

Moment-angle manifold

Suppose $K_{P}=\partial P^{*}$ is a nerve complex of a convex simple n-dimensional polytope P with m facets. A moment-angle manifold of P is a smooth closed $(m+n)$-dimensional 2-connected manifold \mathcal{Z}_{P} homeomorphic to $\mathcal{Z}_{K_{P}}$.

Koszul homology of local rings

Koszul homology

Let $(A, \mathbf{m}, \mathbb{k})$ be a (commutative Noetherian) local ring, its unique maximal ideal \mathbf{m} having a minimal set of generators $\left(x_{1}, \ldots, x_{m}\right)$ and its residue field being $\mathbb{k}=A / \mathbf{m}$.
Then Koszul complex of $(A, \mathbf{m}, \mathbb{k})$ is defined to be an exterior algebra $K_{A}=\Lambda A^{m}$, where A^{m} denotes the free A-module on $\left\{e_{1}, \ldots, e_{m}\right\}$, which is a d.g.a. with a differential d acting as follows:

$$
d\left(e_{i_{1}} \wedge \ldots \wedge e_{i_{k}}\right)=\sum_{r=1}^{k}(-1)^{r-1} x_{i_{r}} e_{i_{1}} \wedge \ldots \wedge \widehat{i_{i_{r}}} \wedge \ldots \wedge e_{i_{k}} .
$$

Poincaré series of local rings

Poincaré series

Let $(A, \mathbf{m}, \mathbb{k})$ be a local ring. Then for an A-module M we define its Poincaré series to be formal power series of the type

$$
P_{A}(M ; t)=\sum_{i=0}^{\infty} \operatorname{dim}_{\mathbb{k}} \operatorname{Tor}_{i}^{A}(M, \mathbb{k}) t^{i}
$$

The \mathbb{k}-module $\operatorname{Tor}_{i}^{A}(M, \mathbb{k})$ is defined to be the ith homology of a projective resolution for \mathbb{k} (viewed as an A-module via the quotient $\operatorname{map} A \rightarrow A / \mathbf{m}=\mathbb{k}$) tensored by M.
We call $P_{A}=P_{A}(\mathbb{k} ; t)$ Poincaré series of a local ring A.

Golod rings

Using a spectral sequence associated with a presentation of a local ring as a quotient ring of a regular local ring, Serre showed that for any local ring A the following coefficient-wise inequality for its Poincaré series holds:

$$
P_{A} \leq \frac{(1+t)^{m}}{1-\sum b_{i} t^{i+1}}
$$

where $b_{i}=\operatorname{dim}_{\mathbb{k}} H_{i}\left(K_{A}\right)$.

Golod rings

Using a spectral sequence associated with a presentation of a local ring as a quotient ring of a regular local ring, Serre showed that for any local ring A the following coefficient-wise inequality for its Poincaré series holds:

$$
P_{A} \leq \frac{(1+t)^{m}}{1-\sum b_{i} t^{i+1}}
$$

where $b_{i}=\operatorname{dim}_{\mathbb{k}} H_{i}\left(K_{A}\right)$.

Definition

A local ring A is called Golod if the Serre's inequality above turns into equality.

Massey products and Golod's theorem

Theorem (E.S.Golod'62)

For a local ring A Serre's inequality turns into equality if and only if multiplication and all Massey products in $H_{*}\left(K_{A}\right)$ are vanishing.

Example

Let A be a free reduced nilpotent algebra, that is, a quotient ring $A_{n, r}=\frac{\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]}{\left(x_{1}, \ldots, x_{n}\right)^{r}}$. Golod (1962) observed that multiplication and all Massey products are trivial in Koszul homology of $A_{n, r}$ and, furthermore, its Betti numbers are equal to $b_{i}=\binom{i+r-2}{r-1}\binom{n+r-1}{i+r-1}$. Therefore, $A_{n, r}$ is a Golod ring and

$$
P_{A_{n, r}}=\frac{(1+t)^{n}}{1-\sum_{i=1}^{n}\binom{i+r-2}{r-1}\binom{n+r-1}{i+r-1} t^{i+1}}
$$

which generalizes computation of Poincaré series given by Kostrikin and Shafarevich (1957).

Moment-angle-complexes and Koszul homology

Let $\mathbf{J} \in \mathbb{Z}_{2}^{m}, \operatorname{mdeg}\left(u_{i}\right)=(-1 ; 0, \ldots, 2, \ldots, 0)$,
$\operatorname{mdeg}\left(v_{i}\right)=(0 ; 0, \ldots, 2, \ldots, 0)$ for $1 \leq i \leq m$.
A multigraded Tor-module of $\mathbb{k}[K]$ is a direct sum of \mathbb{k}-modules
$\operatorname{Tor}_{\mathbb{k}[m]}^{-i, 2 J}(\mathbb{k}[K], \mathbb{k})=H^{-i, 2 J}\left[\mathbb{k}[K] \otimes_{\mathbb{k}} \wedge\left[u_{1}, \ldots, u_{m}\right], d\right] \cong \tilde{H}^{|J|-i-1}\left(K_{J}\right)$,
where $d\left(u_{i}\right)=v_{i}$ and $d\left(v_{i}\right)=0$ for all $1 \leq i \leq m$.

Moment-angle-complexes and Koszul homology

Let $\mathbf{J} \in \mathbb{Z}_{2}^{m}, \operatorname{mdeg}\left(u_{i}\right)=(-1 ; 0, \ldots, 2, \ldots, 0)$,
$\operatorname{mdeg}\left(v_{i}\right)=(0 ; 0, \ldots, 2, \ldots, 0)$ for $1 \leq i \leq m$.
A multigraded Tor-module of $\mathbb{k}[K]$ is a direct sum of \mathbb{k}-modules
$\operatorname{Tor}_{\mathbb{k}[m]}^{-i, 2 \mathrm{~J}}(\mathbb{k}[K], \mathbb{k})=H^{-i, 2 \mathrm{~J}}\left[\mathbb{k}[K] \otimes_{\mathbb{k}} \wedge\left[u_{1}, \ldots, u_{m}\right], d\right] \cong \tilde{H}^{|J|-i-1}\left(K_{J}\right)$,
where $d\left(u_{i}\right)=v_{i}$ and $d\left(v_{i}\right)=0$ for all $1 \leq i \leq m$.

Theorem (V.Buchstaber, T.Panov'99)

A graded \mathbb{k}-algebra isomorphism holds:

$$
H^{*}\left(\mathcal{Z}_{K} ; \mathbb{k}\right) \cong \operatorname{Tor}_{\mathbb{k}[m]}^{*, *}(\mathbb{k}[K], \mathbb{k})=H^{*, *}\left[\mathbb{k}[K] \otimes_{\mathbb{k}} \wedge\left[u_{1}, \ldots, u_{m}\right], d\right] .
$$

Golod property

- $\mathbb{k}[K]$ is a Golod ring if the following identity for its Poincaré series holds

$$
P(\mathbb{k}[K] ; t)=\operatorname{Hilb}\left(\operatorname{Ext}_{\mathbb{k}[K]}(\mathbb{k}, \mathbb{k}) ; t\right)=\frac{(1+t)^{m}}{1-\sum_{i, j>0} \beta^{-i, 2 j}(\mathbb{k}[K]) t^{-i+2 j-1}},
$$

where the bigraded Betti numbers are the dimensions of the Tor-components:

$$
\beta^{-i, 2 j}(\mathbb{k}[K])=\operatorname{dim}_{\mathbb{k}} \operatorname{Tor}_{\mathbb{k}\left[v_{1}, \ldots, v_{m}\right]}^{-i, 2 j}(\mathbb{k}[K], \mathbb{k}) ;
$$

Golod property

- $\mathbb{k}[K]$ is a Golod ring if the following identity for its Poincaré series holds

$$
P(\mathbb{k}[K] ; t)=\operatorname{Hilb}\left(\operatorname{Ext}_{\mathbb{k}[K]}(\mathbb{k}, \mathbb{k}) ; t\right)=\frac{(1+t)^{m}}{1-\sum_{i, j>0} \beta^{-i, 2 j}(\mathbb{k}[K]) t^{-i+2 j-1}},
$$

where the bigraded Betti numbers are the dimensions of the Tor-components:

$$
\beta^{-i, 2 j}(\mathbb{k}[K])=\operatorname{dim}_{\mathbb{k}} \operatorname{Tor}_{\mathbb{k}\left[v_{1}, \ldots, v_{m}\right]}^{-i, 2 j}(\mathbb{k}[K], \mathbb{k}) ;
$$

- $\mathbb{k}[K]$ is minimally non-Golod (A.Berglund, M.Jöllenbeck'07): $\mathbb{k}[K]$ is not Golod, but removing any vertex from K turns the face ring of a restricted complex into a Golod ring.

Golod complexes: examples

J.Grbić, T.E.Panov, S.Theriault, J.Wu'12: $\mathbb{R} P^{2}$ on 6 vertices

Suppose $K=\mathbb{R} P_{6}^{2}$. Then K is a Golod complex and \mathcal{Z}_{K} has a homotopy type of a wedge:

$$
\mathcal{Z}_{K} \simeq\left(S^{5}\right)^{\vee 10} \vee\left(S^{6}\right)^{\vee 15} \vee\left(S^{7}\right)^{\vee 6} \vee \Sigma^{7} \mathbb{R} P^{2}
$$

Golod complexes: examples

J.Grbić, T.E.Panov, S.Theriault, J.Wu'12: $\mathbb{R} P^{2}$ on 6 vertices

Suppose $K=\mathbb{R} P_{6}^{2}$. Then K is a Golod complex and \mathcal{Z}_{K} has a homotopy type of a wedge:

$$
\mathcal{Z}_{K} \simeq\left(S^{5}\right)^{\vee 10} \vee\left(S^{6}\right)^{\vee 15} \vee\left(S^{7}\right)^{\vee 6} \vee \Sigma^{7} \mathbb{R} P^{2} .
$$

L.'15: $\mathbb{C} P^{2}$ on 9 vertices

Suppose $K=\mathbb{C} P_{g}^{2}$. Then K is a Golod complex, all its full subcomplexes K_{J} have free integral homology groups, but \mathcal{Z}_{K} is not homotopy equivalent to a wedge of spheres:

$$
\mathcal{Z}_{K} \simeq\left(S^{7}\right)^{\vee 36} \vee\left(S^{8}\right)^{\vee 90} \vee\left(S^{9}\right)^{\vee 84} \vee\left(S^{10}\right)^{\vee 36} \vee\left(S^{11}\right)^{\vee 9} \vee \Sigma^{10} \mathbb{C} P^{2} .
$$

Golod complexes: examples

J.Grbić, T.E.Panov, S.Theriault, J.Wu'12: $\mathbb{R} P^{2}$ on 6 vertices

Suppose $K=\mathbb{R} P_{6}^{2}$. Then K is a Golod complex and \mathcal{Z}_{K} has a homotopy type of a wedge:

$$
\mathcal{Z}_{K} \simeq\left(S^{5}\right)^{\vee 10} \vee\left(S^{6}\right)^{\vee 15} \vee\left(S^{7}\right)^{\vee 6} \vee \Sigma^{7} \mathbb{R} P^{2} .
$$

L.'15: $\mathbb{C} P^{2}$ on 9 vertices

Suppose $K=\mathbb{C} P_{9}^{2}$. Then K is a Golod complex, all its full subcomplexes K_{J} have free integral homology groups, but \mathcal{Z}_{K} is not homotopy equivalent to a wedge of spheres:

$$
\mathcal{Z}_{K} \simeq\left(S^{7}\right)^{\vee 36} \vee\left(S^{8}\right)^{\vee 90} \vee\left(S^{9}\right)^{\vee 84} \vee\left(S^{10}\right)^{\vee 36} \vee\left(S^{11}\right)^{\vee 9} \vee \Sigma^{10} \mathbb{C} P^{2} .
$$

K.Iriye, T.Yano'16: $\operatorname{cat}\left(\mathcal{Z}_{K}\right)>1$

There exists a Golod simplicial complex K s.t. \mathcal{Z}_{K} is not a co-H-space. That is, $\operatorname{cat}\left(\mathcal{Z}_{K}\right)>\operatorname{cat} 0\left(\mathcal{Z}_{K}\right)=\cup\left(\mathcal{Z}_{K}\right)=1$.

Golod complexes: flag case

Theorem (J.Grbić, T.Panov, S.Theriault, J.Wu'12; T.Panov, Ya.Veryovkin'16)

If K is flag, then the following statements are equivalent:

- $\mathrm{sk}^{1}(K)$ is a chordal graph;
- $\cup\left(\mathcal{Z}_{K}\right)=1$, i.e. multiplication in $H^{+}\left(\mathcal{Z}_{K} ; \mathbf{k}\right)$ is trivial;
- \mathcal{Z}_{K} is homotopy equivalent to a wedge of spheres;
- $\mathbb{k}[K]$ is a Golod ring;
- Commutator subgroup $\pi_{1}\left(\mathcal{R}_{K}\right)=\mathrm{RC}_{K}^{\prime}$ of the right-angled Coxeter group RC_{K} is a free group;
- Associated graded Lie algebra $\operatorname{gr}\left(\mathrm{RC}_{K}^{\prime}\right)$ is free.

Golod complexes: main result

Nonflag case: remark-example (L.Katthän'15)

(a) If $\operatorname{dim} K \leq 3$, then $\cup\left(\mathcal{Z}_{K}\right)=1 \Longleftrightarrow K$ is a Golod complex;
(b) There exists a 4-dimensional simplicial complex K s.t.

- $\cup\left(\mathcal{Z}_{K}\right)=1$;
- There is a nontrivial triple Massey product $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle \subset H^{*}\left(\mathcal{Z}_{K}\right)$; therefore, K is not a Golod complex.

Golod complexes: main result

Nonflag case: remark-example (L.Katthän'15)

(a) If $\operatorname{dim} K \leq 3$, then $\cup\left(\mathcal{Z}_{K}\right)=1 \Longleftrightarrow K$ is a Golod complex;
(b) There exists a 4-dimensional simplicial complex K s.t.

- $\cup\left(\mathcal{Z}_{K}\right)=1$;
- There is a nontrivial triple Massey product $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle \subset H^{*}\left(\mathcal{Z}_{K}\right)$; therefore, K is not a Golod complex.

> Theorem (J.Grbić, T.Panov, S.Theriault, J.Wu'12; A.Berglund'10; L., T.E.Panov'19)

Let \mathbb{k} be a field. The following are equivalent.
(1) $H_{*}\left(\Omega \mathcal{Z}_{K} ; \mathbb{k}\right)$ is a graded free associative algebra;
(2) Multiplication and all Massey products in $H^{+}\left(\mathcal{Z}_{K} ; \mathbb{k}\right)$ are trivial;
(3) $\mathbb{k}[K]$ is a Golod ring;

Golod complexes: main result

Theorem (J.Grbić, T.Panov, S.Theriault, J.Wu'12; A.Berglund'10; L., T.E.Panov)

(4) The following identity for the Hilbert series holds:

$$
\operatorname{Hilb}\left(H_{*}\left(\Omega \mathcal{Z}_{K} ; \mathbb{k}\right) ; t\right)=\frac{1}{1-\operatorname{Hilb}\left(\Sigma^{-1} \tilde{H}^{*}\left(\mathcal{Z}_{K} ; \mathbb{k}\right) ; t\right)}
$$

Let $\mathbb{k}=\mathbb{Q}$. The following conditions are equivalent to (1)-(4).
(5) $L_{\mathcal{Z}_{K}}=\pi_{*}\left(\Omega \mathcal{Z}_{K}\right) \otimes \mathbb{Q}$ is a free graded Lie algebra;
(6) $\mathcal{Z}_{K} \simeq_{\mathbb{Q}} \vee S^{i}$, that is, $\operatorname{cat}_{0}\left(\mathcal{Z}_{K}\right)=1$.

Idea of the proof

We apply two spectral sequences associated with path-loop fibration for \mathcal{Z}_{K} :

- Milnor-Moore (bar) spectral sequence, which has

$$
E_{2}^{b}=\operatorname{Tor}_{H_{*}\left(\Omega \mathcal{Z}_{K}\right)(\mathbb{k}, \mathbb{k})} \text { and converges to } \Sigma^{-1} \tilde{H}_{*}\left(\mathcal{Z}_{K} ; \mathbb{k}\right) ;
$$

- Adams (cobar) spectral sequence, which has

$$
E_{2}^{c}=\operatorname{Cotor}_{H_{*}\left(\mathcal{Z}_{K}\right)}(\mathbb{k} ; \mathbb{k}) \text { and converges to } H_{*}\left(\Omega \mathcal{Z}_{K} ; \mathbb{k}\right)
$$

Key Lemma (L., T.Panov'19)

Conditions (1) and (4) above are equivalent to

- Both Adams (cobar) s.s. and Milnor-Moore (bar) s.s. collapse in E_{2}-terms.
(2) $\Longleftrightarrow(3)$ by graded version of Golod's theorem;
$(3) \Longleftrightarrow(4)$, since
$\Omega\left(\mathbb{C} P^{\infty}\right)^{K} \simeq \Omega \mathcal{Z}_{K} \times \mathbb{T}^{m}$ and $P(\mathbb{k}[K] ; t)=\operatorname{Hilb}\left(H_{*}\left(\Omega\left(\mathbb{C} P^{\infty}\right)^{K} ; \mathbb{k}\right) ; t\right)$.

Minimally non-Golod face rings: flag case

Theorem (J.Grbić, T.Panov, S.Theriault, J.Wu'16)

Let \mathbb{k} be a field and K be a flag simplicial complex. Then the following conditions are equivalent:

- $K=K_{m}$ for $m \geq 4$;
- $\mathcal{Z}_{K} \cong \# S^{i} \times S^{j}$;
- $\mathbb{K}[K]$ is minimally non-Golod.

Theorem (M.Ilyasova'19)

Let K be a flag simplicial complex. The following conditions are equivalent:

- RC_{K}^{\prime} is a one-relator group;
- $H_{2}\left(\mathcal{R}_{K}\right) \cong \mathbb{Z}$;
- $K=K_{p} * \Delta^{q}$, where K_{p} is a boundary of an p-gon for $p \geq 4, q \geq-1$.

Minimally non-Golod face rings: flag case

Conjecture (L., T.Panov'19)

Let $\mathbb{k}=\mathbb{Q}$ and K be a flag simplicial complex. Then the following conditions are equivalent:
(1) $H_{*}\left(\Omega \mathcal{Z}_{K} ; \mathbb{k}\right)$ is a graded associative algebra with one relation;
(2) the rational homotopy Lie algebra $L_{\mathcal{Z}_{K}}$ is a one-relation algebra;
(3) $\mathcal{Z}_{K} \simeq \# S^{i} \times S^{j}$;
(4) RC_{K}^{\prime} is a one-relator group;
(5) $\operatorname{gr}\left(\mathrm{RC}_{K}^{\prime}\right) \otimes \mathbb{Q}$ is a one-relation algebra;
(6) $K=K_{p} * \Delta^{q}$ for $p \geq 4, q \geq-1$;
(7) the following identity for the Poincaré series of $\mathbb{k}[K]$ holds:

$$
P(\mathbb{k}[K] ; t)=\frac{(1+t)^{m}}{1-\sum_{i, j>0} \beta^{-i, 2 j}(\mathbb{k}[K]) t^{-i+2 j-1}+(-1)^{n} t^{m}} .
$$

Moment-angle-complexes and Massey products: notation

Notation I

Consider a set of induced subcomplexes $K_{l_{j}}$ on pairwisely disjoint subsets of vertices $\left\{I_{j}\right\}$ for $1 \leq j \leq k$ and their cohomology classes $\alpha_{j} \in \tilde{H}^{d(j)}\left(K_{l_{j}}\right) \subset H^{m(j)}\left(\mathcal{Z}_{K}\right), 1 \leq j \leq k$, where $m(j)=d(j)+\left|I_{j}\right|+1$.

Notation II

If an s-fold Massey product ($s \leq k$) of consecutive classes $\left\langle\alpha_{i+1}, \ldots, \alpha_{i+s}\right\rangle$ for $1 \leq i+1<i+s \leq k$ is defined, then

$$
\left\langle\alpha_{i+1}, \ldots, \alpha_{i+s}\right\rangle \subset \tilde{H}^{d(i+1, i+s)}\left(K_{l_{i+1} \sqcup \ldots} \sqcup I_{i+s}\right) \subset H^{m(i+1, i+s)}\left(\mathcal{Z}_{K}\right)
$$

where $d(i+1, i+s)=d(i+1)+\ldots+d(i+s)+1$ and $m(i+1, i+s)=m(i+1)+\ldots+m(i+s)-s+2$.

Moment-angle-complexes and Massey products: crucial step

Key Lemma (L.'17)

Suppose $k \geq 3$ and
(1) $\tilde{H}^{d(s, r+s)-1}\left(K_{I_{s} \sqcup \ldots \sqcup I_{r+s}}\right)=0,1 \leq s \leq k-r, 1 \leq r \leq k-2$;
(2) Any of the following two conditions holds:
(a) The k-fold Massey product $\left\langle\alpha_{1}, \ldots, \alpha_{k}\right\rangle$ is defined, or
(b) $\tilde{H}^{d(s, r+s)}\left(K_{I_{s} \cup \ldots \sqcup I_{r+s}}\right)=0,1 \leq s \leq k-r, 1 \leq r \leq k-2$.

Then the k-fold Massey product $\left\langle\alpha_{1}, \ldots, \alpha_{k}\right\rangle$ is strictly defined.

The family \mathcal{Q} of 2-truncated cubes

Construction (L.'16)

Suppose I^{n} is an n-dimensional cube with facets $F_{1}, \ldots, F_{2 n}$, such that F_{i} and $F_{n+i}, 1 \leq i \leq n$ do not intersect. Then we define Q^{n} as a result of a consecutive cut of faces of codimension 2 from I^{n}, having the following Stanley-Reisner ideal:

$$
I_{S R}\left(Q^{n}\right)=\left(v_{k} v_{n+k+i}, 0 \leq i \leq n-2,1 \leq k \leq n-i, \ldots\right),
$$

where v_{i} correspond to $F_{i}, 1 \leq i \leq 2 n$ and in the last dots are the monomials corresponding to the new facets.

The family \mathcal{Q} of 2-truncated cubes

Construction (L.'16)

Suppose I^{n} is an n-dimensional cube with facets $F_{1}, \ldots, F_{2 n}$, such that F_{i} and $F_{n+i}, 1 \leq i \leq n$ do not intersect. Then we define Q^{n} as a result of a consecutive cut of faces of codimension 2 from I^{n}, having the following Stanley-Reisner ideal:

$$
I_{S R}\left(Q^{n}\right)=\left(v_{k} v_{n+k+i}, 0 \leq i \leq n-2,1 \leq k \leq n-i, \ldots\right),
$$

where v_{i} correspond to $F_{i}, 1 \leq i \leq 2 n$ and in the last dots are the monomials corresponding to the new facets.

We denote a family of these 2 -truncated cubes by \mathcal{Q}.

The family \mathcal{Q} of 2-truncated cubes

Construction (L.'16)

Suppose I^{n} is an n-dimensional cube with facets $F_{1}, \ldots, F_{2 n}$, such that F_{i} and $F_{n+i}, 1 \leq i \leq n$ do not intersect. Then we define Q^{n} as a result of a consecutive cut of faces of codimension 2 from I^{n}, having the following Stanley-Reisner ideal:

$$
I_{S R}\left(Q^{n}\right)=\left(v_{k} v_{n+k+i}, 0 \leq i \leq n-2,1 \leq k \leq n-i, \ldots\right),
$$

where v_{i} correspond to $F_{i}, 1 \leq i \leq 2 n$ and in the last dots are the monomials corresponding to the new facets.

We denote a family of these 2 -truncated cubes by \mathcal{Q}.

Theorem (L.'17)

Suppose $\alpha_{i} \in H^{3}\left(\mathcal{Z}_{Q^{n}}\right)$ for $1 \leq i \leq n$ is represented by $v_{i} u_{n+i} \in K_{\mathrm{kk}\left[Q^{n}\right]}^{-1,4}$ with $n \geq 2$. Then the n-fold Massey product $\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$ is strictly defined and nontrivial.

3-dimensional 2-truncated cube from the family \mathcal{Q}

$I_{S R}\left(Q^{3}\right)=\left(v_{1} v_{4}, v_{2} v_{5}, v_{3} v_{6}, v_{1} v_{5}, v_{2} v_{6}, w_{1} v_{3}, w_{1} v_{5}, w_{2} v_{2}, w_{2} v_{4}, w_{1} w_{2}\right)$

Families of polytopes and Massey products: general theory

Let $\mathcal{F}=\left\{P^{n} \mid n \geq 0\right\}$ be a family of polytopes.

Definition (V.Buchstaber, L.'18)

A family \mathcal{F} is called

- an Algebraic Direct Family of Polytopes (ADFP) if $\forall r, n>r$ $\exists i_{r}^{n}: F^{r} \hookrightarrow P^{n}$ s.t. $F^{r}=P^{r}$ and $\left\{P^{r}, i_{r}^{n}\right\}$ is a direct system;
- a Geometric Direct Family of Polytopes (GDFP) if it is algebraic and $\forall r, n>r \exists J \subset[m(n)]$ s.t. $j_{r}^{n}: K_{P r} \cong\left(K_{P^{n}}\right)_{J}$ and $\left\{K_{P r}, j_{r}^{n}\right\}$ is a direct system.

Families of polytopes and Massey products: general theory

Let $\mathcal{F}=\left\{P^{n} \mid n \geq 0\right\}$ be a family of polytopes.

Definition (V.Buchstaber, L.'18)

A family \mathcal{F} is called

- an Algebraic Direct Family of Polytopes (ADFP) if $\forall r, n>r$ $\exists i_{r}^{n}: F^{r} \hookrightarrow P^{n}$ s.t. $F^{r}=P^{r}$ and $\left\{P^{r}, i_{r}^{n}\right\}$ is a direct system;
- a Geometric Direct Family of Polytopes (GDFP) if it is algebraic and $\forall r, n>r \exists J \subset[m(n)]$ s.t. $j_{r}^{n}: K_{P r} \cong\left(K_{P^{n}}\right)_{J}$ and $\left\{K_{P r}, j_{r}^{n}\right\}$ is a direct system.
A DFP \mathcal{F} is called a direct family with nontrivial Massey products if $\exists 0 \notin\left\langle\alpha_{1}, \ldots, \alpha_{k}\right\rangle \subset H^{*}\left(\mathcal{Z}_{P^{n}}\right)$ for $k \rightarrow \infty$ as $n \rightarrow \infty$. Such a family \mathcal{F} is called special if for any $n \geq 2$ there exists a nontrivial strictly defined k-fold Massey product in $H^{*}\left(\mathcal{Z}_{P^{n}}\right)$ for all $2 \leq k \leq n$.

Families of polytopes and Massey products: main result

Theorem (V.Buchstaber, L.'18)

- $\mathcal{Z}_{Q^{n}}$ is a submanifold and a retract of $\mathcal{Z}_{Q^{n+1}}$ for any $n \geq 1$;
- \mathcal{Q} is a special geometric direct family of 2-truncated cubes with nontrivial Massey products.

Families of polytopes and LS-category: main result

Definition (LS-cat)

A covering of a space X is said to be categorical if every set in the covering is open and contractible in X. That is, the inclusion map of each set into X is nullhomotopic.
The Lusternik-Schnirelmann category (or simply LS-category) $\operatorname{cat}(X)$ of X is the smallest integer k s.t. X admits a categorical covering by $k+1$ open sets:

$$
X=U_{0} \cup \ldots \cup U_{k}
$$

Theorem (V.Buchstaber, L.'19)

Let Q^{n} be the n-dimensional 2-truncated cube from the family \mathcal{Q} for $n \geq 2$. Then

$$
\cup\left(\mathcal{Z}_{Q^{n}}\right)=\operatorname{cat}\left(\mathcal{Z}_{Q^{n}}\right)=n
$$

Application: special families and spectral sequences

Definition (V.Buchstaber, L.'19)

We say that a space X has length $\ell(X) \geq k$ w.r.t. a given spectral sequence if there exists a nontrivial differential $d_{p}, p \geq k$ in the spectral sequence of its path-loop fibration $\Omega X \rightarrow P X \rightarrow X$.

Corollary (V.Buchstaber, L.'19)

- Differentials d_{r} for $r \leq n-1$ in Eilenberg-Moore spectral sequence for $\mathcal{Z}_{Q^{n}}$ are nontrivial. In particular,

$$
\ell_{E M}\left(\mathcal{Z}_{Q^{n}}\right) \geq n-1 ;
$$

- Milnor-Moore spectral sequence for $\mathcal{Z}_{\mathcal{Q}^{n}}$ degenerates in the E^{n+1}-term, and therefore,

$$
\ell_{M M}\left(\mathcal{Z}_{Q^{n}}\right) \leq n .
$$

THANK YOU FOR YOUR ATTENTION!

