Higher Whitehead products
in moment-angle complexes

Daisuke Kishimoto

joint work with Kouyemon Iriye

19 Nov 2019; Okayama

1/25



Contents

1. Object of study
2. Result
3. Proof

4. Generalization

2/25



1. Object of study
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Moment-angle complex

® Let K be a simplicial complex with vertex set [m] = {1,..., m}.

® For o C [m], let

D2
Z, = Xy % -+ x Xy, where x,-_{ ree

Def The moment-angle complex for K is defined by

Zx = U Z,.

geK

St ido.
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Moment-angle complex

® Let K be a simplicial complex with vertex set [m] = {1,..., m}.

® For o C [m], let

D2
Z, = Xy % -+ x Xy, where x,-_{ ree

Def The moment-angle complex for K is defined by

Zx = U Z,.

geK
Eg Let K =0A™1 Form=2,
Zx = (D?> x SHyu (St U D?) = a(D? x D?) = S3.

For m general,
ZK — 6(D2)m — 52m—1‘

St ido.
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Davis-Januszkiewicz space

® For o C [m] and a pointed space X, let

X i€
DJy(X) = X1 % -+ X Xm, where X,-:{ 'ee

Def Define

DJx(X) = | DIs(X),
geK

where DJy = DJx(CP*°) is called the Davis-Januszkiewicz space.

x [ €o.
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Davis-Januszkiewicz space

® For o C [m] and a pointed space X, let

X i€
DJy(X) = X1 % -+ X Xm, where X,-:{ 'ee

Def Define

DIk (X) = | DJ(X),
ceK

where DJy = DJx(CP*°) is called the Davis-Januszkiewicz space.

Eg Let K=0A™! For m=2,
DIk(X) = (X x*x)U(xx X) =XV X.
For m general, DJk(X) is the m-fold fat-wedge of X, i.e.

DJk(X) ={(x1,-.-,xm) € X" | x; = = for some i}.

x [ €o.
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Whitehead product

® |et
W: Zx — DJk(5?)

be the map induced from the pinch map (D?, S*) — (52, %).

Def The Whitehead product of maps a1, as: S> — X, denoted by
[cv1, 2], is the composite

S3 = Zyat L DIypi(S?) = S% v 62 42 x

Rem Whitehead products of maps from suspensions are similarly defined.
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Whitehead product

® |et
W: Zx — DJk(5?)

be the map induced from the pinch map (D?, S*) — (52, %).

Def The Whitehead product of maps a1, as: S> — X, denoted by
[cv1, 2], is the composite

S3 = Zop1 5 Dypi(S?) = S2 v 62 4192
Rem Whitehead products of maps from suspensions are similarly defined.
Prop The cofiber of S3 = Zya: v, DJya1(S%) = S? v S? is $2 x S2.

Cor TFAE:
1. [041,042] = 0;
2. a1+ ay: §2Vv 52 5 X extends over S% x S2.
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Higher Whitehead product

® Let aj: S> - X be maps fori=1,...,m.
® Suppose a1 + -+ am: S?V .-V 52 — X extends to a map
—

a: Dlgam-1(S%) — X,
where DJyam-1(S?) is the m-fold fat-wedge of S2.
Def The higher Whitehead product for « is the composite
§2m=1 = Zoamo1 25 Dlgam-1(S?) S X.
If o is clear by the context, we write it simply by [aq, ..., ap].

Rem Higher Whitehead products of maps from suspensions are similarly
defined.
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Higher Whitehead product

® Let aj: S> - X be maps fori=1,...,m.
® Suppose a1 + -+ am: S?V .-V 52 — X extends to a map
—

a: Dlgam-1(S%) — X,
where DJyam-1(S?) is the m-fold fat-wedge of S2.
Def The higher Whitehead product for « is the composite
§2m=1 = Zoamo1 25 Dlgam-1(S?) S X.
If o is clear by the context, we write it simply by [aq, ..., ap].

Rem Higher Whitehead products of maps from suspensions are similarly
defined.

Prop TFAE:
1. A higher Whitehead product of a4, ..., an can be defined to be
trivial;
2. 01+ +am: S?V---VS% 5 X extends over (5%)m.
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The map w

The m-torus T™ acts on Zk such that

Zx X1m ET™ ~ DJk.
Then there is a homotopy fibration

Zx — DJ — BT™,

where we denote the fiber inclusion Zx — DJk by w.
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The map w

The m-torus T™ acts on Zk such that

Zx X1m ET™ ~ DJk.
Then there is a homotopy fibration

Zx — DJ — BT™,
where we denote the fiber inclusion Zx — DJk by w.

Eg If K= 0A!, then the above homotopy fibration is nothing but the
(external) Ganea fibration

S3 = CP® V CP™® — (CP>)?
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Problem

Prop The map w: Zx — DJy factors as the composite
Zk 2 DIk (S?) — DIk

where the second map is induced from the inclusion S? — CP>.
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Problem
Prop The map w: Zx — DJy factors as the composite
Zk 2 DIk (S?) — DIk

where the second map is induced from the inclusion S? — CP>.

e Let aj: S2 — DJk be the inclusion into the i-th CP> in DJk.
Eg

1. The fiber inclusion S3 — CP> v CP> of the Ganea fibration is the
Whitehead product [a1, ap].

2. More generally, if K = 9A™ 1, then the map w: Zx — DJk is the
higher Whitehead product [a1, ..., am].
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Problem
Prop The map w: Zx — DJy factors as the composite
Zk 2 DIk (S?) — DIk

where the second map is induced from the inclusion S? — CP>.

e Let aj: S2 — DJk be the inclusion into the i-th CP> in DJk.
Eg

1. The fiber inclusion S3 — CP> v CP™> of the Ganea fibration is the
Whitehead product [a1, ap].

2. More generally, if K = 9A™ 1, then the map w: Zx — DJk is the
higher Whitehead product [a1, ..., am].

Problem For which K is the map w described in terms of (higher)
Whitehead products of a1,...,am?
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Previous work

Grbi¢ and Theriault studied the problem for a small class of simplicial
complexes by computing the rational loop homology of DJk.

Unfortunately, the proof of their main result includes an unfixable
mistake. But our result recovers their main result.

There are several example calculations of the map w by others.
All techniques used so far are not comprehensive.

We will use the fat-wedge filtration technology which is the only one
comprehensive technique to investigate the homotopy type of Zk.
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2. Result
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Minimal non-face

® A subset o C [m] is called a minimal non-face of K if o ¢ K and any
proper subset of ¢ is a simplex of K.

Eg Minimal non-faces of a simplicial complex

1345

are 123,14, 15, 24,25, 35.
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Minimal non-face

® A subset o C [m] is called a minimal non-face of K if o ¢ K and any

proper subset of ¢ is a simplex of K.

Eg Minimal non-faces of a simplicial complex

1345

are 123,14, 15, 24,25, 35.

e For | C [m],
Ki={oceKl|oCl}

is called the full subcomplex on /.
Eg o C [m] is a minimal non-face if and only if K, = Jo.

Proposition For any () # | C [m], Zk, is a retract of Zg.
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Fillable complex
Recall that (higher) Whitehead products are defined by using boundaries
of simplices.

Then if the homotopy type of Zk is controlled by minimal non-faces of K,
the map w might be described in terms of (higher) Whitehead products.

Def 1. K is called fillable if there are minimal non-faces o1, ..., 0, such
that |[K Uo1 U---Uo,| is contractible.

2. K is called totally fillable if all full subcomplexes are fillable.
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Fillable complex

Recall that (higher) Whitehead products are defined by using boundaries
of simplices.

Then if the homotopy type of Zk is controlled by minimal non-faces of K,
the map w might be described in terms of (higher) Whitehead products.

Def 1. K is called fillable if there are minimal non-faces o1, ..., 0, such
that |[K Uo1 U---Uo,| is contractible.

2. K is called totally fillable if all full subcomplexes are fillable.

® The above {o1,...,0,} is called a filling, where there are possibly
several fillings.

® \We will assume that a fillable complex K is equipped with a specific
filling F(K).

Eg Any skeleton of a simplex is totally fillable.

Proposition Dual shellable complexes are totally fillable.
13/25



Example
The following simplicial complex K is totally fillable.

1 3 4 5
2
Indeed, its non-contractible full subcomplexes are K itself and
Kiigy Kip.ar} K23}
i q] r 2>3
[ ] [ ] [ ]
p 1
K{1,2,3,4} K{1,2,35} K{12.45)
L I> 3 4 ING 5 1[ 4 5
[ ] *——e
2 2 2
all of which are fillable, where (i,;) = (1,4),(1,5),(2,4),(2,5),(3,5) and
(p7 q, r) - (17 27 4‘)7 (17 27 5)7 (17 37 5)7 (27 37 5)7 ( ) 57 1)7 (47 57 2)



Main theorem

e For a totally fillable complex K, we put

We= \/ \/ seii-

0£IC[m] o€ F(K))
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Main theorem

e For a totally fillable complex K, we put

We= \/ \/ seii-

0£IC[m] ceF(K))

Theorem If K is totally fillable, then there is a homotopy equivalence
ex: Zx — Wi
such that for ) £ | C [m] and o € F(K]), the composite
S L wye K e ™ Dy
is the iterated Whitehead product

[ [[[ailv ) aik]’ ajl]’ a.i2] -, aj\l|—k]

for some ordering | — o = {j1 < -+ < jjj—x}, where o = {i1,..., ik}

15/25



Example

Let us apply the main theorem to the following fillable complex K.

1345

2

Here is the list of full subcomplexes and the corresponding spheres and

Whitehead products.

Kiijy
i J
[ ] [ ]

F(Kijy) = {ii}
| —o=10
53

[ai’ aj]

Kip,ar} Ki1,2,3}
qI r 2 3
[ ]
p 1E

F(Kipgry) ={ar} F(Kppz)) = {123}

I —o={p} | —0=10
st S°
[[aq7 af]’ ap] [‘317 an, 33]
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K{1,2,:3,4)
1 : 3 4
2
F(Ki12,343) = {123}
| —o={4}
56

[[a1, a2, a3], a4]

Ki1,2,4,5)
4 5

*——e

2

1

F(Ki245y) = {24}
| —o={1<5}

55

[[[a2, a4], a1]as]

K{1,2,:35)
1]>3 §
2
F(K1,235y) = {123,35}
I— o= {5} {1<2}
S0y S5

[[a1, a2, a3], as] V [[[a3, as], a1], az]
K(1,2.3.45)
2
: 3 4 5
1
F(K2345) = {123}
| —o={4<5}

57

[[[81,32733]7‘9%]735] 17/25



3. Proof
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Fat wedge filtration
Def Put
Zie ={(x1,-..,xm) € Zk | at least m — i of x; are the basepoint}.
Then we get a filtration
x« =78 CZi C- CZR = Zx

which we call the fat-wedge filtration.

19/25



Fat wedge filtration
Def Put
Zle ={(x1,...,xm) € Zk | at least m — i of x; are the basepoint}.
Then we get a filtration
x =20 CZkC - CZR =2k

which we call the fat-wedge filtration.

® The fat wedge filtration was found in the attempt to understand (or
desuspend) the known stable splitting of Z.

® [t clarifies how combinatorics of K is connected to Zk.

® |t already has several applications in topology and combinatorial
commutative algebra.
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Cone decomposition

Thm (Iriye & K '19) For each () # | C [m], there is a map
) [1]—1 -1
(pK/.‘K[|>I<5 —>ZK
by which

Zik=zi | kil =S,
Ic[m], [l|=i
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Cone decomposition

Thm (Iriye & K '19) For each () # | C [m], there is a map
) [1]—1 -1
PK; - ‘K[|>l<5 —>ZK
by which

Zik=zi | kil =S,
Ic[m], [l|=i

Cor If all ¢k, are null homotopic, then there is a homotopy equivalence

Zx ~ \/ hxtazy el
0A£IC[m]

which is natural with respect to K and null homotopies of ¢k .
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Homotopy decomposition

Prop (Iriye & K '19) The map ¢k, factors through the inclusion
|K;| * S"I=* — |K; U {minimal non-faces}| * S!'I~1.

Cor If K is totally fillable, then ¢k, ~ * for all ) # I C [m].
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Homotopy decomposition
Prop (Iriye & K '19) The map ¢k, factors through the inclusion

|K;| % S11=1 — |K; U {minimal non-faces}| % SI/I=1.
Cor If K is totally fillable, then ¢k, ~ * for all ) # I C [m].
Prop If K is fillable, then

Tk~ \/ SsFI7.
oc€F(K)

Proof [EK| =~ |KUyerk) ol/IKI = Voeruy ST O
Thm If K is totally fillable, then there is a homotopy equivalence
ex: Ik = Wk

which is natucal with respect to K and fillings of its full subcomplexes.
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Reduction

® Suppose K is totally fillable.
® Let 0 € F(K;) for 0 # 1 C [m].

® |et L be the simplicial complex which is the union of vertices in /

and Jo.
Cor There is a homotopy commutative diagram

-1

_1 indl €L
Slol+1-1 A Z

incl J J{incl
ol

SlolHi—1 _incl g y1p K, S

whenever we choose an appropriate ordering of | — o.

Then the proof reduces to the case of L, which is done by a homotopical

observation.
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4. Generalization
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Polyhedral products
® Let (X,A) = {(Xi,Al)}7 be a collection of pairs of spaces.
One can associate to K and (X, A) the space
Zk(X, A)

called the polyhedral product.
Eg
1. If (X;, A;) = (D?,SY) for all i, then Zy (X, A) = Zk.
2. 1f (Xi, Ai) = (X, %) for all i, then Zk(X,A) = DJk(X).

® Let (CX,X)={(CX;, Xi)}™; and (XX, *) = {(XXi,*)}™,.
The pinch maps (CX;, Xi) — (XX;, %) induce a map
w: ZK(CK,K) — ZK(ZK,*)

which specializes to W: Zx — DJx(S?).
24 /25



Generalization to polyhedral products

We can generalize our main theorem to the map
w: Zk(CX, X) = Zk (XX, %)

whenever all X; are suspensions because we have the following.

® Our main theorem is in fact a corollary of a similar result on the map
w: Zx — DJk(S?).
e We can define the fat-wedge filtration of Zx(CX, X).

¢ The fat-wedge filtartion of Zx(CX, X) is a cone decomposition
whenever all X; are suspensions.

® |n this case, the attaching maps have the same properties as Zx.
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