On the quasitoric manifolds over
a simple polytope with one vertex cut

Sho Hasui

Introduction
Previous studies

Main part

On the quasitoric manifolds over a simple polytope with one vertex cut

Sho Hasui
University of Tsukuba

Toric Topology 2019 in Okayama, November 19

1 Introduction

Introduction
Previous
studies
2 Previous studies

3 Main part

On the quasitoric manifolds over a simple polytope with one vertex cut

Sho Hasui

Introduction
Previous
studies

§1. Introduction

Main part

Notations

On the
quasitoric manifolds over
a simple
polytope with
one vertex cut
Sho Hasui

Introduction
Previous studies

Main part

- $T^{n}:=\left(S^{1}\right)^{n}$
- The standard action $T^{n} \curvearrowright \mathbb{C}^{n}$:

$$
\left(t_{1}, \ldots, t_{n}\right) \cdot\left(z_{1}, \ldots, z_{n}\right):=\left(t_{1} z_{1}, \ldots, t_{n} z_{n}\right)
$$

- $T^{n} \curvearrowright X, Y$
$f: X \rightarrow Y$ is weakly equivariant $\stackrel{\text { def }}{\Longleftrightarrow}$ $\exists \psi \in \operatorname{Aut}\left(T^{n}\right), \forall t \in T^{n}, \forall x \in X, f(t \cdot x)=\psi(t) \cdot f(x)$.

Definition of a quasitoric manifold

On the quasitoric manifolds over
a simple polytope with one vertex cut

Sho Hasui

Introduction
Previous
studies
Main part

- M : $2 n$-dim smooth manifold
- $T^{n} \curvearrowright M$: smooth

■ P : simple n-polytope (e.g. Δ^{n}, I^{n})

Definition (Davis-Januszkiewicz 1991)

M is a quasitoric manifold over P if
(i) $\left[T^{n} \curvearrowright M\right] \stackrel{\text { local }}{\cong}\left[T^{n} \curvearrowright \mathbb{C}^{n}\right]$: weakly equivariant diffeo,
(ii) $M / T^{n} \cong P$: homeo as manifolds with corners.

A simple example is $\mathbb{C} P^{2}$ with the standard T^{2}-action. (following pages)

example: $\mathbb{C} P^{2}(1)$

On the
quasitoric manifolds over
a simple polytope with one vertex cut

Sho Hasui

Introduction
Previous studies

Main part

$$
T^{2} \curvearrowright \mathbb{C} P^{2} \text { by }\left(t_{1}, t_{2}\right) \cdot\left[z_{0}: z_{1}: z_{2}\right]:=\left[z_{0}: t_{1} z_{1}: t_{2} z_{2}\right]
$$

Condition (i)

$\left[T^{2} \curvearrowright \mathbb{C} P^{2}\right] \stackrel{\text { local }}{=}\left[T^{2} \curvearrowright \mathbb{C}^{2}\right]$: weakly equivariant diffeo.

- $t=\left(t_{1}, t_{2}\right) \in T^{2}$
- $z=\left[z_{0}: z_{1}: z_{2}\right] \in \mathbb{C} P^{2}$
- $U_{i}=\left(z_{i} \neq 0\right), \varphi_{i}: U_{i} \rightarrow \mathbb{C}^{2}: i$-th standard chart of $\mathbb{C} P^{2}$

For $\varphi_{0}: U_{0} \cong \mathbb{C}^{2}$ and $z=\left[1: z_{1}: z_{2}\right] \in U_{0}$,

$$
\varphi_{0}(t \cdot z)=\left(t_{1} z_{1}, t_{2} z_{2}\right)=t \cdot \varphi_{0}(z) .
$$

example: $\mathbb{C} P^{2}(2)$

On the
quasitoric manifolds over a simple polytope with one vertex cut

Sho Hasui

Introduction
Previous studies

Main part

For $\varphi_{1}: U_{1} \cong \mathbb{C}^{2}$ and $z=\left[z_{0}: 1: z_{2}\right] \in U_{1}$,

$$
\begin{aligned}
\varphi_{1}(t \cdot z) & =\varphi_{1}\left(\left[z_{0}: t_{1}: t_{2} z_{2}\right]\right) \\
& =\varphi_{1}\left(\left[t_{1}^{-1} z_{0}: 1: t_{1}^{-1} t_{2} z_{2}\right]\right)=\psi_{1}(t) \cdot \varphi_{1}(z)
\end{aligned}
$$

where $\psi_{1}\left(t_{1}, t_{2}\right)=\left(t_{1}^{-1}, t_{1}^{-1} t_{2}\right)$, an automorphism of T^{2}.

example: $\mathbb{C} P^{2}(2)$

On the
quasitoric manifolds over a simple polytope with one vertex cut

Sho Hasui

Introduction
Previous studies

Main part

For $\varphi_{1}: U_{1} \cong \mathbb{C}^{2}$ and $z=\left[z_{0}: 1: z_{2}\right] \in U_{1}$,

$$
\begin{aligned}
\varphi_{1}(t \cdot z) & =\varphi_{1}\left(\left[z_{0}: t_{1}: t_{2} z_{2}\right]\right) \\
& =\varphi_{1}\left(\left[t_{1}^{-1} z_{0}: 1: t_{1}^{-1} t_{2} z_{2}\right]\right)=\psi_{1}(t) \cdot \varphi_{1}(z)
\end{aligned}
$$

where $\psi_{1}\left(t_{1}, t_{2}\right)=\left(t_{1}^{-1}, t_{1}^{-1} t_{2}\right)$, an automorphism of T^{2}.

Similarly, for $z=\left[z_{0}: z_{1}: 1\right] \in U_{2}$,

$$
\varphi_{2}(t \cdot z)=\psi_{2}(t) \cdot \varphi_{2}(z)
$$

where $\psi_{2}\left(t_{1}, t_{2}\right)=\left(t_{2}^{-1}, t_{1} t_{2}^{-1}\right)$, an automorphism of T^{2}.

example: $\mathbb{C} P^{2}(3)$

On the
quasitoric manifolds over
a simple polytope with one vertex cut

Sho Hasui

Introduction
Previous studies

Main part

Condition (ii)

$\mathbb{C} P^{2} / T^{2} \cong \Delta^{2}:$ homeo as manifolds with corners.
$\mathbb{C} P^{2} / T^{2}=S^{5} / T^{3} .\left(S^{5} \subseteq \mathbb{C}^{3}\right)$
Then the moment map $\left(z_{0}, z_{1}, z_{2}\right) \mapsto\left(\left|z_{0}\right|,\left|z_{1}\right|,\left|z_{2}\right|\right)$ descends to a homeo $S^{5} / T^{3} \rightarrow S^{2} \cap\left(\mathbb{R}_{\geq 0}\right)^{3} \cong \Delta^{2}$.

example: $\mathbb{C} P^{2}(3)$

On the
quasitoric manifolds over
a simple
polytope with one vertex cut

Sho Hasui

Introduction
Previous
studies
Main part

Condition (ii)

$\mathbb{C} P^{2} / T^{2} \cong \Delta^{2}:$ homeo as manifolds with corners.

$$
\mathbb{C} P^{2} / T^{2}=S^{5} / T^{3} \cdot\left(S^{5} \subseteq \mathbb{C}^{3}\right)
$$

Then the moment map $\left(z_{0}, z_{1}, z_{2}\right) \mapsto\left(\left|z_{0}\right|,\left|z_{1}\right|,\left|z_{2}\right|\right)$ descends to a homeo $S^{5} / T^{3} \rightarrow S^{2} \cap\left(\mathbb{R}_{\geq 0}\right)^{3} \cong \Delta^{2}$.

Remark

$\mathbb{C} P^{n}$ is a quasitoric manifold over Δ^{n}.

Fact

Moreover, any projective non-singular toric variety is a quasitoric manifold.

Fundamental correspondence

On the
quasitoric manifolds over
a simple polytope with one vertex cut

Sho Hasui

Introduction
Previous studies

Main part

Fact

There is the following one-to-one correspondence:

$$
\begin{array}{ccc}
\text { \{a toric variety }\} & \longleftrightarrow & \{\text { a fan }\} \\
\text { \{a quasitoric manifold }\} & \longleftrightarrow & \text { \{a characteristic pair }\}
\end{array}
$$

A characteristic pair is (P, λ) where P is a simple polytope and λ is a characteristic matrix on P.

A characteristic matrix on P is an integer matrix satisfying a certain condition depending on P, which reflects the information of isotropy subgroups.
For example, the characteristic matrix of $\mathbb{C} P^{2}$ is $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right)$.

Construction of quasitoric manifold

On the
quasitoric manifolds over
a simple
polytope with
one vertex cut
Sho Hasui

Introduction
Previous studies

Main part
λ : characteristic matrix on P
$\rightsquigarrow M(\lambda):=\left(P \times T^{n}\right) / \sim_{\lambda}$, a qt mfd over P with ch mat λ
\sim_{λ} : isotropy information represented by λ
This construction gives the fundamental correspondence in the previous page.

Motivation

On the
quasitoric manifolds over
a simple polytope with one vertex cut

Sho Hasui

Introduction
Previous studies

Main part

Up to weakly equivariant homeo, the classification of qt mfd's is a purely combinatoric matter through the fundamental correspondence.

However, the characteristic matrices give very little informations on the homeo's which are NOT weakly equivariant.

Aim

Develop a new method to find homeomorphisms between quasitoric manifolds which are not weakly equivariant.

We denote "not (necessarily) weakly equivariant" by "not eqv."

On the quasitoric manifolds over a simple polytope with one vertex cut

Sho Hasui

Introduction
Previous
studies
§2. Previous studies

Connected sum (1)

On the
quasitoric manifolds over
a simple polytope with one vertex cut

Sho Hasui

We regard the simple polytopes as a subclass of the manifolds with corners.

Fact

The connected sum of simple polytopes is a simple polytope.
Let M, N be quasitoric manifolds over P, Q.
Then the equivariant connected sum $M \sharp N$ is a quasitoric manifold over $P \sharp Q$.

On the other hand, we can easily determine whether a quasitoric manifold is decomposed into an equivariant connected sum of quasitoric manifolds. (by using the characteristic matrix)

Connected sum (2)

On the
quasitoric manifolds over
a simple
polytope with one vertex cut

Sho Hasui

Introduction
Previous studies

Main part

We can get not eqv homeo's by using the connected sum.

For example, suppose that $P=Q \sharp \Delta^{n}$ and there are qt mfd's over P corresponding to the ch matrices $\lambda, \lambda^{\prime}$.
Moreover, suppose that $\lambda=(A|B| \mathbf{v}), \lambda^{\prime}=\left(A|B| \mathbf{v}^{\prime}\right)$ where $(A \mid B)$ is on Q and $(B \mid \mathbf{v}),\left(B \mid \mathbf{v}^{\prime}\right)$ are on Δ^{n}.

If $\operatorname{det} B= \pm 1$,

$$
M(\lambda) \cong M(A \mid B) \sharp M(B \mid \mathbf{v}), \quad M\left(\lambda^{\prime}\right) \cong M(A \mid B) \sharp M\left(B \mid \mathbf{v}^{\prime}\right) .
$$

Since $M(B \mid \mathbf{v}) \cong M\left(B \mid \mathbf{v}^{\prime}\right) \cong \mathbb{C} P^{n}$ (the classification over $\left.\Delta^{n}\right)$, we see that $M(\lambda) \cong M\left(\lambda^{\prime}\right)$.

Toric manifolds over vc(${ }^{n}$)

On the quasitoric manifolds over
a simple polytope with one vertex cut

Sho Hasui

Let us consider the case $P=\operatorname{vc}\left(I^{n}\right)=I^{n} \sharp \Delta^{n}$.
On the toric manifolds over $\mathrm{vc}\left(I^{n}\right)$, we have the following. (They are a subclass of qt mfds over vc($\left.I^{n}\right)$.)
Note that any ch mat can be denoted by $\left(-E_{n}|B| \mathbf{v}\right)$ now.

Theorem (H-Kuwata-Masuda-Park 2018)

$\operatorname{det} B$ is invariant under cohomology isomorphism.
Theorem (H-Kuwata-Masuda-Park 2018)
Let $\mathcal{V}^{n}(q)$ denote the set of isomorphism classes of toric manifolds over $\operatorname{vc}\left(I^{n}\right)$ with $\operatorname{det} B=q$.
(1) If $q \neq 0,1,2$, then $\mathcal{V}^{n}(q)$ contains only 1 element.
(2) If $q=0,2$, then $\mathcal{V}^{n}(q)$ contains only 1 diffeo class.

On the quasitoric manifolds over a simple polytope with one vertex cut

Sho Hasui

Introduction
Previous
studies

§3. Main part

Main part

Setting

On the
quasitoric manifolds over
a simple
polytope with
one vertex cut
Sho Hasui

Introduction
Previous
studies
Main part
$P=\operatorname{vc}(Q)=Q \sharp \Delta^{n}$
$\lambda=(A|B| \mathbf{v}), \lambda^{\prime}=\left(A|B| \mathbf{v}^{\prime}\right)$: characteristic matrices on P
$M:=M(\lambda), M^{\prime}=M\left(\lambda^{\prime}\right)$
Consider whether an analogue of the previous theorem holds in this situation.

Problem

Are M and M^{\prime} homeomorphic?
By an elementary calculation on the characteristic matrices, we obtain the following.

Lemma

If $|\operatorname{det} B| \geq 3$, then $\mathbf{v}=\mathbf{v}^{\prime}$.

Idea

On the
quasitoric manifolds over
a simple
polytope with
one vertex cut
Sho Hasui

Introduction
Previous studies

Main part

Denote by $\pi: M \rightarrow P, \pi^{\prime}: M^{\prime} \rightarrow P$ the projections.
Let F be the facet made by vertex cut, N be a tubular neighborhood of F and $S:=\partial N$.

Then

$$
\begin{aligned}
M & =\pi^{-1}(P \backslash \stackrel{\circ}{N}) \bigcup_{\pi^{-1}(S)} \pi^{-1}(N) \\
M^{\prime} & =\pi^{\prime-1}(P \backslash \stackrel{\circ}{N}) \bigcup_{\pi^{\prime-1}(S)} \pi^{\prime-1}(N)
\end{aligned}
$$

From the construction of $M(\lambda)$ and $M\left(\lambda^{\prime}\right)$, we have

$$
\pi^{-1}(P \backslash \stackrel{N}{N})=\pi^{\prime-1}(P \backslash \stackrel{N}{N}), \quad \pi^{-1}(S)=\pi^{\prime-1}(S)
$$

Moreover, $\pi^{-1}(N)$ is the disk bundle of a complex line bundle over $\pi^{-1}(F) \cong \mathbb{C} P^{n-1}$ classified by $\operatorname{det} B$.

The case det $B \neq 0$

On the quasitoric manifolds over
a simple polytope with one vertex cut

Sho Hasui

Introduction
Previous
studies
Main part

Suppose det $B \neq 0$ and let $G:=\mathbb{Z} /|\operatorname{det} B|$.
To compare the attaching diffeo, we consider the following diagram.

If $\operatorname{det} B= \pm 2$, we can take α and β specifically and show that $\beta^{-1} \circ \alpha$ is isotopic to the identity.

Proposition

If $\operatorname{det} B \neq 0$, then $M \cong M^{\prime}$.

Remark on the case det $B=0$

On the

Sho Hasui

Recall:
$P=\operatorname{vc}(Q)=Q \sharp \Delta^{n}$
$\lambda=(A|B| \mathbf{v}), \lambda^{\prime}=\left(A|B| \mathbf{v}^{\prime}\right)$: characteristic matrices on P
$M:=M(\lambda), M^{\prime}=M\left(\lambda^{\prime}\right)$

Problem

Are M and M^{\prime} homeomorphic?
For the case $\operatorname{det} B=0$, we can find some counterexample for this problem in the known classification results.
So we have to consider the following in this case.

Problem

Find some additional conditions for λ and λ^{\prime} to make $M \cong M^{\prime}$ hold.

The case $\operatorname{det} B=0$ (on-going)

On the
quasitoric manifolds over
a simple
polytope with
one vertex cut
Sho Hasui

Introduction
Previous studies

Main part

In this case, we consider the following diagram.

Taking specific α and β, we see $\beta^{-1} \circ \alpha(z, t)=(f(t) \cdot z, t)$ where $f: S^{1} \rightarrow U(n), f(t)=\operatorname{diag}\left(t^{b_{1}}, \ldots, t^{b_{n-1}}, 1\right)\left(b_{i} \in \mathbb{Z}\right)$.
We want to show $[f]=0$ in $\pi_{1}(U(n))=\mathbb{Z}$, which requires $b_{1}+\cdots+b_{n-1}=0$.

It seems good to consider whether the existence of good cohomology isomorphism leads to this equality.

