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Notations

T n := (S1)n

The standard action T n ↷ Cn :

(t1, . . . , tn) · (z1, . . . , zn) := (t1z1, . . . , tnzn).

T n ↷ X ,Y

f : X → Y is weakly equivariant
def⇐⇒

∃ψ ∈ Aut(T n), ∀t ∈ T n, ∀x ∈ X , f (t · x) = ψ(t) · f (x).
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Definition of a quasitoric manifold

M : 2n–dim smooth manifold

T n ↷ M : smooth

P : simple n–polytope (e.g. ∆n, I n)

Definition (Davis–Januszkiewicz 1991)

M is a quasitoric manifold over P if

(i) [T n ↷ M]
local∼= [T n ↷ Cn] : weakly equivariant diffeo,

(ii) M/T n ∼= P : homeo as manifolds with corners.

A simple example is CP2 with the standard T 2–action.
(following pages)
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example: CP2 (1)

T 2 ↷ CP2 by (t1, t2) · [z0 : z1 : z2] := [z0 : t1z1 : t2z2]

Condition (i)

[T 2 ↷ CP2]
local∼= [T 2 ↷ C2] : weakly equivariant diffeo.

t = (t1, t2) ∈ T 2

z = [z0 : z1 : z2] ∈ CP2

Ui = (zi 6= 0), φi : Ui → C2: i–th standard chart of CP2

For φ0 : U0
∼= C2 and z = [1 : z1 : z2] ∈ U0,

φ0(t · z) = (t1z1, t2z2) = t · φ0(z).
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example: CP2 (2)

For φ1 : U1
∼= C2 and z = [z0 : 1 : z2] ∈ U1,

φ1(t · z) = φ1([z0 : t1 : t2z2])

= φ1([t
−1
1 z0 : 1 : t−1

1 t2z2]) = ψ1(t) · φ1(z)

where ψ1(t1, t2) = (t−1
1 , t−1

1 t2), an automorphism of T 2.

Similarly, for z = [z0 : z1 : 1] ∈ U2,

φ2(t · z) = ψ2(t) · φ2(z)

where ψ2(t1, t2) = (t−1
2 , t1t

−1
2 ), an automorphism of T 2.
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example: CP2 (3)

Condition (ii)

CP2/T 2 ∼= ∆2 : homeo as manifolds with corners.

CP2/T 2 = S5/T 3. (S5 ⊆ C3)

Then the moment map (z0, z1, z2) 7→ (|z0|, |z1|, |z2|) descends
to a homeo S5/T 3 → S2 ∩ (R≥0)

3 ∼= ∆2.

Remark

CPn is a quasitoric manifold over ∆n.

Fact

Moreover, any projective non-singular toric variety is a
quasitoric manifold.
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Fundamental correspondence

Fact

There is the following one-to-one correspondence:

{a toric variety} ←→ {a fan}

{a quasitoric manifold} ←→ {a characteristic pair}

A characteristic pair is (P, λ) where P is a simple polytope and
λ is a characteristic matrix on P.

A characteristic matrix on P is an integer matrix satisfying a
certain condition depending on P, which reflects the
information of isotropy subgroups.

For example, the characteristic matrix of CP2 is

(
1 0 1
0 1 1

)
.
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Construction of quasitoric manifold

λ: characteristic matrix on P

⇝ M(λ) := (P × T n)/ ∼λ, a qt mfd over P with ch mat λ

∼λ: isotropy information represented by λ

This construction gives the fundamental correspondence in the
previous page.
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Motivation

Up to weakly equivariant homeo, the classification of qt mfd’s
is a purely combinatoric matter through the fundamental
correspondence.

However, the characteristic matrices give very little
informations on the homeo’s which are NOT weakly
equivariant.

Aim

Develop a new method to find homeomorphisms between
quasitoric manifolds which are not weakly equivariant.

We denote “not (necessarily) weakly equivariant” by “not eqv.”
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Connected sum (1)

We regard the simple polytopes as a subclass of the manifolds
with corners.

Fact

The connected sum of simple polytopes is a simple polytope.

Let M,N be quasitoric manifolds over P,Q.

Then the equivariant connected sum M♯N is a quasitoric
manifold over P♯Q.

On the other hand, we can easily determine whether a
quasitoric manifold is decomposed into an equivariant
connected sum of quasitoric manifolds.
(by using the characteristic matrix)
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Connected sum (2)

We can get not eqv homeo’s by using the connected sum.

For example, suppose that P = Q♯∆n and there are qt mfd’s
over P corresponding to the ch matrices λ, λ′.

Moreover, suppose that λ = (A|B|v), λ′ = (A|B|v′) where
(A|B) is on Q and (B|v), (B|v′) are on ∆n.

If detB = ±1,

M(λ) ∼= M(A|B)♯M(B|v), M(λ′) ∼= M(A|B)♯M(B|v′).

Since M(B|v) ∼= M(B|v′) ∼= CPn (the classification over ∆n),
we see that M(λ) ∼= M(λ′).
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Toric manifolds over vc(I n)

Let us consider the case P = vc(I n) = I n♯∆n.

On the toric manifolds over vc(I n), we have the following.
(They are a subclass of qt mfds over vc(I n).)

Note that any ch mat can be denoted by (−En|B|v) now.

Theorem (H–Kuwata–Masuda–Park 2018)

detB is invariant under cohomology isomorphism.

Theorem (H–Kuwata–Masuda–Park 2018)

Let Vn(q) denote the set of isomorphism classes of toric
manifolds over vc(I n) with detB = q.

(1) If q 6= 0, 1, 2, then Vn(q) contains only 1 element.

(2) If q = 0, 2, then Vn(q) contains only 1 diffeo class.
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Setting

P = vc(Q) = Q♯∆n

λ = (A|B|v), λ′ = (A|B|v′): characteristic matrices on P

M := M(λ),M ′ = M(λ′)

Consider whether an analogue of the previous theorem holds in
this situation.

Problem

Are M and M ′ homeomorphic?

By an elementary calculation on the characteristic matrices, we
obtain the following.

Lemma

If | detB| ≥ 3, then v = v′.
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Idea

Denote by π : M → P, π′ : M ′ → P the projections.

Let F be the facet made by vertex cut, N be a tubular
neighborhood of F and S := ∂N.

Then
M = π−1(P \ N̊)

∪
π−1(S)

π−1(N),

M ′ = π′−1(P \ N̊)
∪

π′−1(S)

π′−1(N).

From the construction of M(λ) and M(λ′), we have

π−1(P \ N̊) = π′−1(P \ N̊), π−1(S) = π′−1(S).

Moreover, π−1(N) is the disk bundle of a complex line bundle
over π−1(F ) ∼= CPn−1 classified by detB.
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The case detB 6= 0

Suppose detB 6= 0 and let G := Z/| detB|.
To compare the attaching diffeo, we consider the following
diagram.

π−1(S) // π−1(F )

S2n−1/G //

α

∼=

99

β

∼=

%%

CPn−1

∼=

::

∼=

$$
π′−1(S) // π′−1(F )

If detB = ±2, we can take α and β specifically and show that
β−1 ◦ α is isotopic to the identity.

Proposition

If detB 6= 0, then M ∼= M ′.
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Remark on the case detB = 0

Recall:

P = vc(Q) = Q♯∆n

λ = (A|B|v), λ′ = (A|B|v′): characteristic matrices on P

M := M(λ),M ′ = M(λ′)

Problem

Are M and M ′ homeomorphic?

For the case detB = 0, we can find some counterexample for
this problem in the known classification results.

So we have to consider the following in this case.

Problem

Find some additional conditions for λ and λ′ to make M ∼= M ′

hold.
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The case detB = 0 (on-going)

In this case, we consider the following diagram.

π−1(S) // π−1(F )

CPn−1 × S1 //

α

∼=

99

β

∼=

%%

CPn−1

∼=

::

∼=

$$
π′−1(S) // π′−1(F )

Taking specific α and β, we see β−1 ◦ α(z , t) = (f (t) · z , t)
where f : S1 → U(n), f (t) = diag(tb1 , . . . , tbn−1 , 1) (bi ∈ Z).
We want to show [f ] = 0 in π1(U(n)) = Z, which requires
b1 + · · ·+ bn−1 = 0.

It seems good to consider whether the existence of good
cohomology isomorphism leads to this equality.
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