Sho Hasui

Introduction

Previous studies

Main part

On the quasitoric manifolds over a simple polytope with one vertex cut

Sho Hasui

University of Tsukuba

Toric Topology 2019 in Okayama, November 19

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Sho Hasui

Introduction

Previous studies

Main part

1 Introduction

2 Previous studies

3 Main part

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 → ⊙へ⊙

Sho Hasui

Introduction

Previous studies

Main part

$\S1$. Introduction

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Notations

On the quasitoric manifolds over a simple polytope with one vertex cut

Sho Hasui

Introduction

Previous studies

Main part

- $T^n := (S^1)^n$
- The standard action $T^n \curvearrowright \mathbb{C}^n$:

$$(t_1,\ldots,t_n)\cdot(z_1,\ldots,z_n):=(t_1z_1,\ldots,t_nz_n).$$

■
$$T^n \curvearrowright X, Y$$

 $f: X \to Y$ is weakly equivariant $\stackrel{\text{def}}{\iff}$
 $\exists \psi \in \operatorname{Aut}(T^n), \forall t \in T^n, \forall x \in X, f(t \cdot x) = \psi(t) \cdot f(x).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Definition of a quasitoric manifold

On the quasitoric manifolds over a simple polytope with one vertex cut

Sho Hasui

Introduction

Previous studies

Main part

- *M* : 2*n*-dim smooth manifold
- $T^n \curvearrowright M$: smooth
- P : simple *n*-polytope (e.g. Δ^n , I^n)

Definition (Davis–Januszkiewicz 1991)

M is a **quasitoric manifold over** *P* if (i) $[T^n \curvearrowright M] \stackrel{\text{local}}{\cong} [T^n \curvearrowright \mathbb{C}^n]$: weakly equivariant diffeo, (ii) $M/T^n \cong P$: homeo as manifolds with corners.

A simple example is $\mathbb{C}P^2$ with the standard T^2 -action. (following pages)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

example: $\mathbb{C}P^2$ (1)

On the quasitoric manifolds over a simple polytope with one vertex cut

Sho Hasui

Introduction

Previous studies

Main part

$$\mathcal{T}^2 \curvearrowright \mathbb{C} \mathcal{P}^2$$
 by $(t_1, t_2) \cdot [z_0 : z_1 : z_2] := [z_0 : t_1 z_1 : t_2 z_2]$

Condition (i)

 $[T^2 \curvearrowright \mathbb{C}P^2] \stackrel{\text{local}}{\cong} [T^2 \curvearrowright \mathbb{C}^2]$: weakly equivariant diffeo.

•
$$t = (t_1, t_2) \in T^2$$

• $z = [z_0 : z_1 : z_2] \in \mathbb{C}P^2$
• $U_i = (z_i \neq 0), \ \varphi_i : U_i \rightarrow \mathbb{C}^2 : i$ -th standard chart of $\mathbb{C}P^2$
For $\varphi_0 : U_0 \cong \mathbb{C}^2$ and $z = [1 : z_1 : z_2] \in U_0$,

$$\varphi_0(t \cdot z) = (t_1 z_1, t_2 z_2) = t \cdot \varphi_0(z).$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

example: $\mathbb{C}P^2$ (2)

On the quasitoric manifolds over a simple polytope with one vertex cut

F

Sho Hasu

Introduction

Previous studies

Main part

or
$$\varphi_1 : U_1 \cong \mathbb{C}^2$$
 and $z = [z_0 : 1 : z_2] \in U_1$,
 $\varphi_1(t \cdot z) = \varphi_1([z_0 : t_1 : t_2 z_2])$
 $= \varphi_1([t_1^{-1} z_0 : 1 : t_1^{-1} t_2 z_2]) = \psi_1(t) \cdot \varphi_1(z)$

where $\psi_1(t_1, t_2) = (t_1^{-1}, t_1^{-1}t_2)$, an automorphism of T^2 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

example: $\mathbb{C}P^2$ (2)

On the quasitoric manifolds over a simple polytope with one vertex cut

Sho Hasu

Introduction

Previous studies

Main part

For
$$\varphi_1 : U_1 \cong \mathbb{C}^2$$
 and $z = [z_0 : 1 : z_2] \in U_1$,
 $\varphi_1(t \cdot z) = \varphi_1([z_0 : t_1 : t_2 z_2])$
 $= \varphi_1([t_1^{-1} z_0 : 1 : t_1^{-1} t_2 z_2]) = \psi_1(t) \cdot \varphi_1(z)$
where $\psi_1(t_1, t_2) = (t_1^{-1}, t_1^{-1} t_2)$, an automorphism of T^2 .
Similarly, for $z = [z_0 : z_1 : 1] \in U_2$,
 $\varphi_2(t \cdot z) = \psi_2(t) \cdot \varphi_2(z)$

where $\psi_2(t_1, t_2) = (t_2^{-1}, t_1 t_2^{-1})$, an automorphism of T^2 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

example: $\mathbb{C}P^2$ (3)

On the quasitoric manifolds over a simple polytope with one vertex cut

Sho Hasui

Introduction

Previous studies

Main part

Condition (ii)

 $\mathbb{C}P^2/T^2 \cong \Delta^2$: homeo as manifolds with corners.

$$\mathbb{C}P^2/T^2 = S^5/T^3$$
. $(S^5 \subseteq \mathbb{C}^3)$

Then the moment map $(z_0, z_1, z_2) \mapsto (|z_0|, |z_1|, |z_2|)$ descends to a homeo $S^5/T^3 \to S^2 \cap (\mathbb{R}_{\geq 0})^3 \cong \Delta^2$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

example: $\mathbb{C}P^2$ (3)

On the quasitoric manifolds over a simple polytope with one vertex cut

Sho Hasui

Introduction

Previous studies

Main part

Condition (ii)

 $\mathbb{C}P^2/T^2 \cong \Delta^2$: homeo as manifolds with corners.

$$\mathbb{C}P^2/T^2 = S^5/T^3$$
. $(S^5 \subseteq \mathbb{C}^3)$

Then the moment map $(z_0, z_1, z_2) \mapsto (|z_0|, |z_1|, |z_2|)$ descends to a homeo $S^5/T^3 \to S^2 \cap (\mathbb{R}_{\geq 0})^3 \cong \Delta^2$.

Remark

 $\mathbb{C}P^n$ is a quasitoric manifold over Δ^n .

Fact

Moreover, any projective non-singular toric variety is a quasitoric manifold.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Fundamental correspondence

On the quasitoric manifolds over a simple polytope with one vertex cut

Sho Hasui

Introduction

Previous studies

Main part

Fact

There is the following one-to-one correspondence:

- $\{ a \text{ toric variety} \} \qquad \longleftrightarrow \qquad \{ a \text{ fan} \}$
- $\{a \text{ quasitoric manifold}\} \iff \{a \text{ characteristic pair}\}$

A characteristic pair is (P, λ) where P is a simple polytope and λ is a **characteristic matrix on** P.

A D > A D > A D > A D > D = 0

A characteristic matrix on P is an integer matrix satisfying a certain condition depending on P, which reflects the information of isotropy subgroups.

For example, the characteristic matrix of $\mathbb{C}P^2$ is $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.

Construction of quasitoric manifold

On the quasitoric manifolds over a simple polytope with one vertex cut

Sho Hasui

Introduction

Previous studies

Main part

 $\lambda:$ characteristic matrix on P

 $\rightsquigarrow M(\lambda) := (P \times T^n) / \sim_{\lambda}$, a qt mfd over P with ch mat λ

 \sim_{λ} : isotropy information represented by λ

This construction gives the fundamental correspondence in the previous page.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motivation

On the quasitoric manifolds over a simple polytope with one vertex cut

Sho Hasui

Introduction

Previous studies

Main part

Up to weakly equivariant homeo, the classification of qt mfd's is a purely combinatoric matter through the fundamental correspondence.

However, the characteristic matrices give very little informations on the homeo's which are NOT weakly equivariant.

Aim

Develop a new method to find homeomorphisms between quasitoric manifolds which are not weakly equivariant.

We denote "not (necessarily) weakly equivariant" by "not eqv."

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Sho Hasui

Introduction

Previous studies

Main part

$\S 2.$ Previous studies

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Connected sum (1)

On the quasitoric manifolds over a simple polytope with one vertex cut

Sho Hasui

Introduction

Previous studies

Main part

We regard the simple polytopes as a subclass of the manifolds with corners.

Fact

The connected sum of simple polytopes is a simple polytope.

Let M, N be quasitoric manifolds over P, Q.

Then the equivariant connected sum M # N is a quasitoric manifold over P # Q.

On the other hand, we can easily determine whether a quasitoric manifold is decomposed into an equivariant connected sum of quasitoric manifolds. (by using the characteristic matrix)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Connected sum (2)

On the quasitoric manifolds over a simple polytope with one vertex cut

Sho Hasui

Introduction

Previous studies

Main part

We can get not eqv homeo's by using the connected sum.

For example, suppose that $P = Q \sharp \Delta^n$ and there are qt mfd's over P corresponding to the ch matrices λ, λ' .

Moreover, suppose that $\lambda = (A|B|\mathbf{v}), \lambda' = (A|B|\mathbf{v}')$ where (A|B) is on Q and $(B|\mathbf{v}), (B|\mathbf{v}')$ are on Δ^n .

If det $B = \pm 1$,

 $M(\lambda) \cong M(A|B) \sharp M(B|\mathbf{v}), \quad M(\lambda') \cong M(A|B) \sharp M(B|\mathbf{v}').$

Since $M(B|\mathbf{v}) \cong M(B|\mathbf{v}') \cong \mathbb{C}P^n$ (the classification over Δ^n), we see that $M(\lambda) \cong M(\lambda')$.

Toric manifolds over $vc(I^n)$

On the quasitoric manifolds over a simple polytope with one vertex cut

Sho Hasui

Introduction

Previous studies

Main part

Let us consider the case $P = vc(I^n) = I^n \sharp \Delta^n$.

On the toric manifolds over $vc(I^n)$, we have the following. (They are a subclass of qt mfds over $vc(I^n)$.)

Note that any ch mat can be denoted by $(-E_n|B|\mathbf{v})$ now.

Theorem (H–Kuwata–Masuda–Park 2018)

 $\det B$ is invariant under cohomology isomorphism.

Theorem (H–Kuwata–Masuda–Park 2018)

Let $\mathcal{V}^n(q)$ denote the set of isomorphism classes of toric manifolds over $vc(I^n)$ with det B = q.

(1) If $q \neq 0, 1, 2$, then $\mathcal{V}^n(q)$ contains only 1 element.

(2) If q = 0, 2, then $\mathcal{V}^n(q)$ contains only 1 diffeo class.

Sho Hasui

Introduction

Previous studies

Main part

 $\S3.$ Main part

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Setting

On the quasitoric manifolds over a simple polytope with one vertex cut

Sho Hasui

Introductior

Previous studies

Main part

 $P = \operatorname{vc}(Q) = Q \sharp \Delta^n$

 $\lambda = (A|B|\mathbf{v}), \lambda' = (A|B|\mathbf{v}')$: characteristic matrices on P $M := M(\lambda), M' = M(\lambda')$

Consider whether an analogue of the previous theorem holds in this situation.

Problem

Are M and M' homeomorphic?

By an elementary calculation on the characteristic matrices, we obtain the following.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lemma

If
$$|\det B| \ge 3$$
, then $\mathbf{v} = \mathbf{v}'$.

Idea

On the quasitoric manifolds over a simple polytope with one vertex cut

Sho Hasui

Introduction

Previous studies

Main part

Denote by $\pi \colon M \to P, \pi' \colon M' \to P$ the projections.

Let *F* be the facet made by vertex cut, *N* be a tubular neighborhood of *F* and $S := \partial N$.

Then

$$egin{aligned} &M=\pi^{-1}(P\setminus \mathring{N})igcup_{\pi^{-1}(S)}\pi^{-1}(N),\ &M'=\pi'^{-1}(P\setminus \mathring{N})igcup_{\pi'^{-1}(S)}\pi'^{-1}(N). \end{aligned}$$

From the construction of $M(\lambda)$ and $M(\lambda')$, we have $\pi^{-1}(P \setminus \mathring{N}) = \pi'^{-1}(P \setminus \mathring{N}), \quad \pi^{-1}(S) = \pi'^{-1}(S).$

Moreover, $\pi^{-1}(N)$ is the disk bundle of a complex line bundle over $\pi^{-1}(F) \cong \mathbb{C}P^{n-1}$ classified by det *B*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The case det $B \neq 0$

On the quasitoric manifolds over a simple polytope with one vertex cut

Sho Hasu

Introduction

Previous studies

Main part

Suppose det $B \neq 0$ and let $G := \mathbb{Z}/|\det B|$.

To compare the attaching diffeo, we consider the following diagram.

If det $B = \pm 2$, we can take α and β specifically and show that $\beta^{-1} \circ \alpha$ is isotopic to the identity.

ヘロマ ヘ動 マ ヘヨマ

э

Proposition

If det $B \neq 0$, then $M \cong M'$.

Remark on the case det B = 0

On the quasitoric manifolds over a simple polytope with one vertex cut

Sho Hasui

Introduction

Previous studies

Main part

Recall:

$$P = \operatorname{vc}(Q) = Q \sharp \Delta^n$$

 $\lambda = (A|B|\mathbf{v}), \lambda' = (A|B|\mathbf{v}'): \text{ characteristic matrices on } P$ $M := M(\lambda), M' = M(\lambda')$

Problem

Are M and M' homeomorphic?

For the case det B = 0, we can find some counterexample for this problem in the known classification results.

So we have to consider the following in this case.

Problem

Find some additional conditions for λ and λ' to make $M \cong M'$ hold.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The case det B = 0 (on-going)

On the quasitoric manifolds over a simple polytope with one vertex cut

Introduction Previous

studies

Main part

In this case, we consider the following diagram.

Taking specific α and β , we see $\beta^{-1} \circ \alpha(z, t) = (f(t) \cdot z, t)$ where $f: S^1 \to U(n), f(t) = \text{diag}(t^{b_1}, \dots, t^{b_{n-1}}, 1)$ ($b_i \in \mathbb{Z}$). We want to show [f] = 0 in $\pi_1(U(n)) = \mathbb{Z}$, which requires $b_1 + \dots + b_{n-1} = 0$.

It seems good to consider whether the existence of good cohomology isomorphism leads to this equality.