Almost Pogorelov polytopes

Nikolai Erokhovets

Moscow State University erochovetsn@hotmail.com

International Conference
«Toric Topology 2019 in Okayama»
November 18-21, 2019
Okayama University of Sicences

Polytopes

By a polytope P we mean a combinatorial convex 3-dimensional polytope.

A polytope P is simple, if any its vertex belongs to exactly 3 faces.

k-belts

A k-belt $(k \geqslant 3)$ is a cyclic sequence of k faces such that faces are adjacent if and only if they follow each other and no three faces have a common vertex.

3-belt

4-belt

5-belt

Proposition

Any simple 3-polytope $P \neq \Delta^{3}$ has a 3-, 4-, or 5-belt.

Flag polytopes

A simple polytope is called flag if any its set of pairwise intersecting faces has a nonempty intersection.

Proposition

A simple polytope P is flag iff $P \neq \Delta^{3}$ and P has no 3-belts;
A flag polytope with the smallest number of faces is the cube.

Pogorelov polytopes

Problem (A.V. Pogorelov, 1967)

To characterize polytopes realizable in the Lobachevsky space \mathbb{L}^{3} as bounded polytopes with right dihedral angles.

We call such polytopes Pogorelov polytopes.

Motivation

Such polytopes produce «regular» partitions of \mathbb{L}^{3} into equal polytopes.

(figures by Ya.V. Kucherinenko)

Pogorelov polytopes

Theorem (A.V. Pogorelov, 1967, E.M. Andreev, 1970)

A polytope P is a Pogorelov polytope iff it is a flag polytope without 4-belts. The realization is unique up to isometries.

A Pog-polytope with the smallest number of faces is the dodecahedron.

Cohomological rigidity

A family of manifolds is called cohomologically rigid over the ring R, if for any two manifolds from the family a graded isomorphism of cohomology rings over R implies a diffeomorphism of manifolds.

Pogorelov polytopes give rise to cohomologically rigid families:

- ($m+3$)-dimensional moment-angle manifolds \mathcal{Z}_{p} over \mathbb{Z}, where m is the number of faces of P (F. Fan, J. Ma, X. Wang, 2015);
- 6-dimensional quasitoric manifolds $M(P, \wedge)$ over \mathbb{Z}, and 3-dimensional hyperbolic manifolds $R\left(P, \Lambda_{2}\right)$ over \mathbb{Z}_{2}
(V. M. Buchstaber, N. Yu. Erokhovets, M. Masuda,
T. E. Panov, S. Park, 2017)

Example of Pogorelov polytopes: k-barrels

A k-barrel is a Pogorelov polytope for $k \geqslant 5$;
In 1931 F. Löbell glued 8 copies of the 6-barrel to construct the first example of a closed three-dimensional hyperbolic manifold.

In 1987 A. Yu. Vesnin constructed hyperbolic manifolds of «Löbell type» for all k-barrels, $k \geqslant 5$.

A (mathematical) fullerene is a simple polytope with all faces pentagons and hexagons.

Buckminsterfullerene C_{60}

Truncated icosahedron

Theorem (T. Došlić, 1998, 2003)

Any fullerene is a Porogelov polytope.

Cyclic k-edge-connectivity (ck-connectivity)

Definition

- A simple polytope $P \neq \Delta^{3}$ is ck-connected, if it has no l-belts, $l<k$.
- A simple polytope $P \neq \Delta^{3}$ is strongly ck-connected ($c^{*} k$-connected), if it is $c k$-connected and any k-belt surrounds a face (is trivial).
- By definition Δ^{3} is $c^{*} 3$-connected, but not $c 4$-connected.

Families of ck-connected polytopes

- Any simple polytope is c3-connected, but at most $c^{*} 5$-connected.
- We obtain a chain of nested families of polytopes:

$$
\mathcal{P}_{s} \supset \mathcal{P}_{\text {aflag }} \supset \mathcal{P}_{\text {flag }} \supset \mathcal{P}_{\text {aPog }} \supset \mathcal{P}_{\text {Pog }} \supset \mathcal{P}_{\text {Pog* }}
$$

- c3-connected \mathcal{P}_{s} - all simple polytopes;
- $c^{*} 3$-connected $\mathcal{P}_{\text {aflag }}$ - almost flag polytopes;
- c4-connected $\mathcal{P}_{\text {flag }}$ - flag polytopes;
- $c^{*} 4$-connected $\mathcal{P}_{\text {aPog }}$ - almost Pogorelov polytopes ;
- c5-connected $\mathcal{P}_{\text {Pog }}$ - Pogorelov polytopes;
- $c^{*} 5$-connected $\mathcal{P}_{\text {Pog }}{ }^{*}$ - strongly Pogorelov polytopes.

Theorem (G.D. Birkhoff, 1913)

The Four Colour Problem for planar graphs can be reduced only to Pog* polytopes.

n-disk-fullerenes

Definition (M. Deza, M. Dutour Sikirić and M. I. Shtogrin, 2013)

An n-disk-fullerene is a simple polytope with marked n-gonal face such that all other faces are pentagons and hexagons.

A unique 7-disk-fullerene with the minimal number of faces

Theorem (V. M. Buchstaber, N. Yu. Erokhovets, 2015-2018)

- Any 3-disk fullerene is almost flag.
- Any 4-disk-fullerene is almost Pogorelov.
- Any 7-disk-fullerene is Pogorelov.
- For any $n \geqslant 8$ there exist n-disk-fullerenes P and Q, where P is not almost flag, and Q is $P o g^{*}$.

Andreev's theorem I

Theorem (E.M. Andreev, 1970)

A polytope $P \neq \Delta^{3}$ can be realized as a bounded polytope in \mathbb{L}^{3} with dihedral angles $\varphi_{i, j} \in\left(0, \frac{\pi}{2}\right]$ at edges $F_{i} \cap F_{j}$ if and only if

- P is simple;
- $\varphi_{i, j}+\varphi_{j, k}+\varphi_{k, i}>\pi$ for any vertex $F_{i} \cap F_{j} \cap F_{k}$;
- $\varphi_{i, j}+\varphi_{j, k}+\varphi_{k, i}<\pi$ for any 3-belt $\left(F_{i}, F_{j}, F_{k}\right)$;
- $\varphi_{i, j}+\varphi_{j, k}+\varphi_{k, l}+\varphi_{l, i}<2 \pi$ for any 4-belt $\left(F_{i}, F_{j}, F_{k}, F_{l}\right)$;
- if $P=\Delta^{2} \times I$, then there is an edge at a base with the dihedral angle $<\frac{\pi}{2}$.
The realization is unique up to isometries.

Corollaries of Andreev's theorem I

Corollary 1

A simple polytope $P \neq \Delta^{3}$ can be realized in \mathbb{L}^{3} as a bounded polytope with equal non-obtuse dihedral angles $\left(\in\left(\frac{\pi}{3}, \frac{\pi}{2}\right]\right) \Leftrightarrow P$ is flag.

Corollary 2

A simple polytope $P \neq \Delta^{3}$ can be realized in \mathbb{L}^{3} as a bounded polytope with right dihedral angles $\Leftrightarrow P$ is flag and has no 4-belts.

Idea (T.E. Panov, 2018)

Andreev's result imply that almost Pogorelov polytopes \approx right-angled polytopes of finite volume in \mathbb{L}^{3}.

Andreev's theorem II (1970)

A polytope $P \neq \Delta^{3}$ can be realized as a polytope of finite volume in \mathbb{L}^{3} with dihedral angles $\varphi_{i, j} \in\left(0, \frac{\pi}{2}\right]$ if and only if

- P has vertices of valency of 3 and 4 ;
- $\varphi_{i, j}+\varphi_{j, k}+\varphi_{k, i} \geqslant \pi$ for any 3-valent vertex $F_{i} \cap F_{j} \cap F_{k}$;
- $\varphi_{i, j}=\frac{\pi}{2}$ for each edge at a 4-valent vertex;
- $\varphi_{i, j}+\varphi_{j, k}+\varphi_{k, i}<\pi$ for any 3-belt $\left(F_{i}, F_{j}, F_{k}\right)$;
- $\varphi_{i, j}+\varphi_{j, k}+\varphi_{k, l}+\varphi_{I, i}<2 \pi$ for any 4-belt $\left(F_{i}, F_{j}, F_{k}, F_{l}\right)$;
- if $P=\Delta^{2} \times I$, then there is an edge at a base with the dihedral angle $<\frac{\pi}{2}$;
- $\varphi_{j, k}+\varphi_{k, i}<\pi$, if faces F_{i} and F_{j} intersect at a 4-valent vertex and F_{k} is adjacent to both of them and does not contain their common vertex.

The intersection with the absolute consists of the 4 -valent vertices and the 3 -valent vertices with the sum of dihedral angles equal to π.

Corollaries of Andreev's theorem

There is nothing about a uniqueness of the realization.
A polytope P can be realized as a polytope of finite volume in \mathbb{L}^{3} with right dihedral angles $\Leftrightarrow P$

- has vertices of valency 3 and 4 ;
- has no 3- and 4-belts;
- has no pair of faces intersecting at a 4-valent vertex and adjacent simultaneously to a face not containing it.
The intersection with the absolute consists of 4 -valent vertices.
Strong (Mostow) rigidity \Rightarrow uniqueness of realization.

Theorem (N.Yu. Erokhovets, 2018)

Cutting off 4 -valent vertices gives a bijection between right-angled polytopes of finite volume in \mathbb{L}^{3} and almost Pogorelov polytopes different from the cube β^{β} and the pentagonal prism $M_{5} \times I$.

Ideal right-angled polytopes

A medial graph of a plane graph G is another graph $M(G)$ that represents the adjacencies between edges in the faces of G.

- For any polytope P its medial graph $G(P)$ is the graph of an ideal right-angled polytope;
- The graph of any ideal right-angled polytope is the medial graph for exactly two (possibly equal) polytopes. Moreover, these polytopes are dual to each other.

k-antiprisms

- The graph of the ideal octahedron is the medial graph of the tetrahedron.
- The medial graph of a k-gonal pyramid is the graph of a k-antiprism.

a)

b)
a) a k-gonal pyramid and its medial graph; b) a k-antiprism

The Koebe-Andreev-Thurston theorem

The correspondence between ideal right-angled polytopes and medial graphs plays a fundamental role in the well-known theorem.

Any polytope P has a geometric realization in \mathbb{R}^{3} such that all its edges are tangent to a sphere.

Construction of simple polytopes

Theorem (V. Eberhard, 1891)

A polytope P is simple iff it is can be obtained from the simplex Δ^{3} by a sequence of operations of cutting off a vertex, an edge, or two adjacent edges ((2,k)-truncations) by one hyperplane.

Construction of almost flag polytopes

Proposition (N.Yu. Erokhovets, 2018)
A polytope P is almost flag if and only if one of the equivalent conditions holds

- P can be obtained from $P=\Delta^{3}$ with at most two vertices cut by a sequence of operations of cutting off a vertex, an edge, or a pair of adjacent edges not equivalent to a cutting off a vertex of a triangle.
- P is obtained by a simultaneous cutting off a disjoint set of vertices of Δ^{3} or a flag polytope.

Construction of flag polytopes

> Theorem (A. Kotzig, 1967; V. Volodin, 2012+V.M. Buchstaber, N.Yu. Erokhovets, 2015)

A polytope is flag iff it can be obtained from the cube β^{β} by a sequence of edge-truncations and $(2, k)$-truncations, $k \geqslant 6$.

Construction of almost Pogorelov polytopes

Theorem (follows from the paper by D. Barnette, 1974)
A simple polytope P is almost Pogorelov iff either P is the cube, or the 5-gonal prism, or it can be obtained from the
3-dimensional associahedron (Stasheff polytope) by cuttings off edges not lying in 4-gons, and ($2, k$)-truncations, $k \geqslant 6$.

- For any quadrangle of a flag polytope P there is a flag polytope Q such that P is obtained from Q by cutting off an edge producing the prescribed quadrangle.
- For almost Pogorelov polytopes analogous fact is not true.

Theorem (N.Yu. Erokhovets, 2018)

Any almost Pogorelov polytope $P \neq I^{3}, M_{5} \times I$ is obtained by cutting off a disjoint set of edges (a matching) of an almost Pogorelov polytope Q or the polytope P_{8}, producing all its quadrangles.

Polytope P_{8}

Proposition

Any ideal right-angled polytope is obtained by a contraction of edges of a perfect matching of an almost Pogorelov polytope or the polytope P_{8} containing exactly one edge of each quadrangle.

Problem

To characterize almost Pogorelov polytopes obtained by cutting off matchings of Pogorelov polytopes.

Necessary condition

Each quadrangle is adjacent by a pair of opposite edges to faces with at least six sides.

Connected sum along k-gonal faces

A connected sum of two simple polytopes P and Q along k-gonal faces F and G is a combinatorial analog of glueing of two polytopes along congruent faces orthogonal to adjacent faces.

Connected sum with the dodecahedron along 5-gons.

Construction of Pogorelov and Pogolelov* polytopes

> Theorem (D. Barnette, 1977+V.M. Buchstaber-E., 2017)
> A polytope P is Pog iff either P is a q-barrel, $q \geqslant 5$, or it can be constructed from the 5- or the 6-barrel by a sequence of $(2, k)$-truncations, $k \geqslant 6$, and connected sums with the 5-barrel.

Theorem (D. Barnette+V. M. Buchstaber, N. Yu. Erokhovets)
A polytope P is Pog* iff either P is a q-barrel, $q \geqslant 5$, or it can be constructed from the 6-barrel by a sequence of ($2, k$)-truncations, $k \geqslant 6$.

Non-Pog* fullerenes=(5, 0)-nanotubes

(1) Take patch C of the dodecahedron drawn on the left;
(2) add $k \geqslant 0$ five-belts of hexagons;
(0) glue up by the patch C again to obtain the fullerene $D_{5 k}$.

Proposition

A fullerene has the form $D_{5 k}$ iff it contains a patch C.
Th. (F. Kardoš, R. Škrekovski vs K. Kutnar, D. Marušič, 2008)
A fullerene is not Pog * if and only if it is $D_{5 k}, k \geqslant 1$.

Construction of fullerenes

Theorem (V.M. Buchstaber, N.Yu. Erokhovets, 2017)
Any Pogorelov* fullerene either is the dodecahedron or can be obtained from the 6-barrel by a sequence of $(2,6)$ - and $(2,7)$-truncations such that intermediate polytopes are fullerenes or 7-disk-fullerenes with the heptagon adjacent to a pentagon.

Construction of ideal right-angled polytopes

In the survey [Right-angled polyhedra and hyperbolic 3-manifolds, Russian Math. Surveys, 72:2 (2017), 335-374]
A. Yu. Vesnin comparing results by

- I. Rivin (1996) on ideal polytopes, and
- G. Brinkmann, S. Greenberg, C. Greenhill, B.D. McKay, R. Thomas, and P. Wollan (2005) on graph theory formulated theorem

Any ideal right-angled polytope can be obtained from some k-antiprism, $k \geqslant 3$, by operations of edge-twist.

Edge-twist. The edges belong to one face and are not adjacent.

Construction of ideal right-angled polytopes

Theorem (N.Yu. Erokhovets, 2019)
A polytope P is ideal right-angled if and only if either P is a k-antiprism, $k \geqslant 3$, or P can be obtained from the 4 -antiprism by a sequence of restricted edge-twists.

Restricted edge-twist. Edges are adjacent to the same edge.

Rigid properties

Definition

A property is rigid for the family of manifolds, if any isomorphism of graded rings $\varphi: H^{*}\left(M_{1}\right) \rightarrow H^{*}\left(M_{2}\right), M_{1}, M_{2} \in \mathcal{F}$ implies that both manifolds either have or do not have this property.

We say that a property is rigid for the class of polytopes, if it rigid for the corresponding family of moment-angle manifolds.

Proposition (F. Fan, J. Ma, X. Wang, 2015)

A property to be a flag polytope is rigid in the class of simple 3-polytopes.

Proof: The polytope $P \neq \Delta^{3}$ is flag if and only if

$$
H^{m-2}\left(\mathcal{Z}_{P}\right) \subset\left(\tilde{H}^{*}\left(\mathcal{Z}_{P}\right)\right)^{2}
$$

Rigid properties

Proposition (F. Fan, J. Ma, X. Wang, 2015)

A property to be Pogorelov polytope is rigid in the class of simple 3-polytopes.

Proof: The flag polytope P is Pogorelov if and only if the multiplication

$$
H^{3}\left(\mathcal{Z}_{P}\right) \otimes H^{3}\left(\mathcal{Z}_{P}\right) \rightarrow H^{6}\left(\mathcal{Z}_{P}\right)
$$

is trivial.

Conjecture

The property to be almost Pogorelov polytope is rigid it the class of simple 3-polytopes.

Rigid sets

Let P be a simple 3-polytope. Then the cohomology rings $H^{*}\left(\mathcal{Z}_{P}\right)$ and $H^{*}(M(P, \Lambda))$ have no torsion.

Assume that for any manifold M from a family \mathcal{F} a set $S_{M} \subset H^{*}(M)$ is given.

Definition

A set S_{M} is rigid for the family \mathcal{F} if $\varphi\left(S_{M_{1}}\right)=S_{M_{2}}$ for any isomorphism of graded rings $\varphi: H^{*}\left(M_{1}\right) \rightarrow H^{*}\left(M_{2}\right)$,
$M_{1}, M_{2} \in \mathcal{F}$.
The group $H^{3}\left(\mathcal{Z}_{P}\right)$ is a group with the basis $\left\{a_{i, j}\right\}$ corresponding to pairs of non-adjacent faces F_{i} and F_{j}.

Lemma (F. Fan, J. Ma, X. Wang, 2015)
The set $\left\{ \pm a_{i, j}\right\}$ is rigid for the class of Pogorelov polytopes.

Rigidity for belts (F. Fan, J. Ma, X. Wang, 2015)

Each k-belt corresponds to an element $H^{k+2}\left(\mathcal{Z}_{P}\right)$.
The free abelian subgroup in $H^{k+2}\left(\mathcal{Z}_{P}\right)$ with the basis corresponding to k-belts is rigid for the class of all simple 3 -polytopes.

The subset in $H^{k+2}\left(\mathcal{Z}_{P}\right)$ of \pm elements corresponding to k-belts is rigid for the class of Pogorelov polytopes.

The subset in $H^{k+2}\left(\mathcal{Z}_{P}\right)$ of \pm elements corresponding to k-belts around faces is rigid for the class of Pogorelov polytopes.

Thus, any isomorphism of graded rings $\varphi: H^{*}\left(\mathcal{Z}_{P}\right) \rightarrow H^{*}\left(\mathcal{Z}_{Q}\right)$ for Pogorelov polytopes P and Q defines a bijection between sets of faces.

This bijection sends adjacent faces to adjacent faces.

Rigidity for quasitoric manifolds
 (V.M. Buchstaber, N.Yu. Erokhovets, M. Masuda, T.E. Panov, S. Park, 2016)

Each face F_{i} corresponds to the element v_{i} in $H^{2}(M(P, \Lambda))$.
The set of elements $\left\{ \pm v_{i}: F_{i}\right.$ is a face $\}$ is rigid for the class of Pogorelov polytopes.

Thus, any isomorphism of graded rings
$\varphi: H^{*}\left(M\left(P, \Lambda_{P}\right)\right) \rightarrow H^{*}\left(M\left(Q, \Lambda_{Q}\right)\right)$ for Pogorelov polytopes P and Q defines a bijection between sets of faces.

This bijection sends adjacent faces to adjacent faces.

Toric topology of almost Pogorelov polytopes

The image of $H^{3}\left(\mathcal{Z}_{P}\right) \otimes H^{3}\left(\mathcal{Z}_{P}\right) \rightarrow H^{6}\left(\mathcal{Z}_{P}\right)$ is the subgroup with the basis consisting of elements corresponding to 4 -belts.

Proposition

The subset in $H^{6}\left(\mathcal{Z}_{P}\right)$ of \pm elements corresponding to 4-belts is rigid for the class of almost Pogorelov polytopes different from the cube β^{3} and the pentagonal prism $M_{5} \times I$.

Problem

Is the set of
(1) $\pm a_{i, j} \subset H^{3}\left(\mathcal{Z}_{P}\right)$;
(2) \pm elements corresponding to belts;
(3) \pm elements corresponding to belts around faces;
(4) $\pm v_{i}$ in $H^{2}(M(P, \Lambda))$
rigid for the class of almost Pogorelov polytopes $\neq \beta^{3}, M_{5} \times I$?

國 V．M．Buchstaber，N．Yu．Erokhovets，
Combinatorics and toric topology of fullerenes and related families of polytopes
A book assumed to be published in AMS in 2020.
目 V．M．Buchstaber，N．Yu．Erokhovets，
Fullerenes，Polytopes and Toric Topology
Lecture Note Series，IMS，NUS，Singapore，2017，67－178， arXiv：math．CO／160902949．
目 V．M．Buchstaber，N．Yu．Erokhovets，
Construction of families of three－dimensional polytopes， characteristic patches of fullerenes，and Pogorelov polytopes
Izvestiya：Mathematics，81：5（2017），901－972．

目 V.M. Buchstaber, N.Yu. Erokhovets, M. Masuda, T.E. Panov, S. Park,

Cohomological rigidity of manifolds defined by 3-dimensional polytopes
Russian Math. Surveys, 72:2 (2017),199-256
围 N.Yu. Erokhovets,
Three-dimensional right-angled polytopes of finite volume in the Lobachevsky space: combinatorics and constructions
Proceedings of the Steklov Institute of Mathematics, 305 (2019), 86-147 (in press).
V.M. Buchstaber, T.E. Panov,

Toric Topology
AMS Math. Surv. and monographs, vol. 204, 2015. 518 pp.

圊 V．M．Buchstaber and T．E．Panov，
On manifolds defined by 4－colourings of simple3－polytopes Russian Math．Surveys，71：6（2016），1137－1139．
圊 F．Fan，J．Ma，X．Wang，
B－Rigidity of flag 2－spheres without 4－belt
arXiv：1511．03624．
圊 A．Yu．Vesnin，
Right－angled polyhedra and hyperbolic 3－manifolds
Russian Math．Surveys，72：2（2017），335－374．

Thank You for the Attention!

