K-theory of toric hyperKähler manifolds

V. Uma

I.I.T Chennai

Conference on Toric Topology 2019 Okayama

ヘロト 人間 ト ヘヨト ヘヨト

3

2 Basic Construction

- Construction of toric hyperKähler manifolds
- Cohomology ring of toric hyperKähler manifolds

Our Results

• K-ring of toric hyperKähler manifolds

イロト イポト イヨト イヨト

2 Basic Construction

- Construction of toric hyperKähler manifolds
- Cohomology ring of toric hyperKähler manifolds

Our Results

• K-ring of toric hyperKähler manifolds

くロト (過) (目) (日)

æ

2 Basic Construction

- Construction of toric hyperKähler manifolds
- Cohomology ring of toric hyperKähler manifolds

3 Our Results

K-ring of toric hyperKähler manifolds

æ

Earlier work

- Toric hyperKähler manifolds [BD00] were defined by Bielawski and Dancer who study their topology and geometry.
- The integral cohomology ring of toric hyperKähler manifolds was studied by Konno [K00] who gives a presentation for the cohomology ring.
- Recently Kuroki [KU11] studied equivariant cohomology ring of toric hyperKähler manifolds in relation to cohomological rigidity problem.
- Algebraic geometric analogue of toric hyperKähler varieties was developed by Hausel and Sturmfels [HS02] and studied in relation to the geometry of toric quiver varieties.

イロト イポト イヨト イヨト

Earlier work

- Toric hyperKähler manifolds [BD00] were defined by Bielawski and Dancer who study their topology and geometry.
- The integral cohomology ring of toric hyperKähler manifolds was studied by Konno [K00] who gives a presentation for the cohomology ring.
- Recently Kuroki [KU11] studied equivariant cohomology ring of toric hyperKähler manifolds in relation to cohomological rigidity problem.
- Algebraic geometric analogue of toric hyperKähler varieties was developed by Hausel and Sturmfels [HS02] and studied in relation to the geometry of toric quiver varieties.

くロト (過) (目) (日)

Earlier work

- Toric hyperKähler manifolds [BD00] were defined by Bielawski and Dancer who study their topology and geometry.
- The integral cohomology ring of toric hyperKähler manifolds was studied by Konno [K00] who gives a presentation for the cohomology ring.
- Recently Kuroki [KU11] studied equivariant cohomology ring of toric hyperKähler manifolds in relation to cohomological rigidity problem.
- Algebraic geometric analogue of toric hyperKähler varieties was developed by Hausel and Sturmfels [HS02] and studied in relation to the geometry of toric quiver varieties.

ヘロト 人間 ト ヘヨト ヘヨト

Earlier work

- Toric hyperKähler manifolds [BD00] were defined by Bielawski and Dancer who study their topology and geometry.
- The integral cohomology ring of toric hyperKähler manifolds was studied by Konno [K00] who gives a presentation for the cohomology ring.
- Recently Kuroki [KU11] studied equivariant cohomology ring of toric hyperKähler manifolds in relation to cohomological rigidity problem.
- Algebraic geometric analogue of toric hyperKähler varieties was developed by Hausel and Sturmfels [HS02] and studied in relation to the geometry of toric quiver varieties.

ヘロト 人間 ト ヘヨト ヘヨト

Our aim

- To study K-theory of toric hyperKähler manifolds and toric hyperKähler varieties
- We would like to give a presentation of the K-ring using the combinatorics of the associated hyperplane arrangement
- Our earlier results on the K-ring of smooth projective toric varieties, quasitoric manifolds and torus manifolds used the combinatorics of fan or polytope.
- We wished to explore if methods used extend to the setting of toric hyperKähler manifolds.

Our aim

- To study K-theory of toric hyperKähler manifolds and toric hyperKähler varieties
- We would like to give a presentation of the K-ring using the combinatorics of the associated hyperplane arrangement
- Our earlier results on the K-ring of smooth projective toric varieties, quasitoric manifolds and torus manifolds used the combinatorics of fan or polytope.
- We wished to explore if methods used extend to the setting of toric hyperKähler manifolds.

ヘロン ヘアン ヘビン ヘビン

1

Our aim

- To study K-theory of toric hyperKähler manifolds and toric hyperKähler varieties
- We would like to give a presentation of the K-ring using the combinatorics of the associated hyperplane arrangement
- Our earlier results on the K-ring of smooth projective toric varieties, quasitoric manifolds and torus manifolds used the combinatorics of fan or polytope.
- We wished to explore if methods used extend to the setting of toric hyperKähler manifolds.

・ロト ・ 理 ト ・ ヨ ト ・

ъ

Our aim

- To study K-theory of toric hyperKähler manifolds and toric hyperKähler varieties
- We would like to give a presentation of the K-ring using the combinatorics of the associated hyperplane arrangement
- Our earlier results on the K-ring of smooth projective toric varieties, quasitoric manifolds and torus manifolds used the combinatorics of fan or polytope.
- We wished to explore if methods used extend to the setting of toric hyperKähler manifolds.

ヘロト ヘアト ヘビト ヘビト

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Notations

• $N := \mathbb{Z}^n$; $M \simeq Hom(N, \mathbb{Z})$

•
$$N' := \mathbb{Z}^m$$
; $M' := Hom(N', \mathbb{Z})$.

•
$$\hat{\alpha} := (\alpha_1, \ldots, \alpha_m) \in M'_{\mathbb{R}} := M' \otimes_{\mathbb{Z}} \mathbb{R}.$$

• Let v_1, \ldots, v_m be nonzero primitive vectors in *N*.

イロト 不得 とくほと くほとう

ъ

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Notations

• $N := \mathbb{Z}^n$; $M \simeq Hom(N, \mathbb{Z})$

• $N' := \mathbb{Z}^m$; $M' := Hom(N', \mathbb{Z})$.

 Let {e₁,..., e_m} be a basis of N' and {e₁^{*},..., e_m^{*}} be the dual basis of M'.

•
$$\hat{\alpha} := (\alpha_1, \ldots, \alpha_m) \in M'_{\mathbb{R}} := M' \otimes_{\mathbb{Z}} \mathbb{R}.$$

• Let v_1, \ldots, v_m be nonzero primitive vectors in *N*.

イロト 不得 とくほ とくほとう

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Notations

- $N := \mathbb{Z}^n$; $M \simeq Hom(N, \mathbb{Z})$
- $N' := \mathbb{Z}^m$; $M' := Hom(N', \mathbb{Z})$.
- Let {e₁,..., e_m} be a basis of N' and {e₁^{*},..., e_m^{*}} be the dual basis of M'.
- $\hat{\alpha} := (\alpha_1, \ldots, \alpha_m) \in M'_{\mathbb{R}} := M' \otimes_{\mathbb{Z}} \mathbb{R}.$
- Let v_1, \ldots, v_m be nonzero primitive vectors in *N*.

イロト 不得 とくほと くほとう

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Notations

• $N := \mathbb{Z}^n$; $M \simeq Hom(N, \mathbb{Z})$

•
$$N' := \mathbb{Z}^m$$
; $M' := Hom(N', \mathbb{Z})$.

•
$$\hat{\alpha} := (\alpha_1, \ldots, \alpha_m) \in M'_{\mathbb{R}} := M' \otimes_{\mathbb{Z}} \mathbb{R}.$$

• Let v_1, \ldots, v_m be nonzero primitive vectors in *N*.

イロト 不得 とくほと くほとう

ъ

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Notations

• $N := \mathbb{Z}^n$; $M \simeq Hom(N, \mathbb{Z})$

•
$$N' := \mathbb{Z}^m$$
; $M' := Hom(N', \mathbb{Z})$.

 Let {e₁,..., e_m} be a basis of N' and {e₁^{*},..., e_m^{*}} be the dual basis of M'.

•
$$\hat{\alpha} := (\alpha_1, \ldots, \alpha_m) \in M'_{\mathbb{R}} := M' \otimes_{\mathbb{Z}} \mathbb{R}.$$

• Let v_1, \ldots, v_m be nonzero primitive vectors in *N*.

ヘロン ヘアン ヘビン ヘビン

æ

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Smooth hyperplane arrangements

- *H_i* := {*x* ∈ *M*_ℝ | ⟨*x*, *v_i*⟩ + α_i = 0} is a codimension 1 affine subspace in *M*_ℝ with a normal oriented vector *v_i*.
- $\mathcal{H} := \{H_1, \ldots, H_m\}$ is a hyperplane arrangement in $M_{\mathbb{R}}$.
- *H* is simple if each nonempty intersection of *k* hyperplanes has codimension *k* and if there are *n* hyperplanes with nonempty intersection
- *H* is smooth if *H* is simple and every *n* linearly independent vectors from {*v*₁,..., *v_m*} span *N*.

・ロト ・ 理 ト ・ ヨ ト ・

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Smooth hyperplane arrangements

- *H_i* := {*x* ∈ *M*_ℝ | ⟨*x*, *v_i*⟩ + α_i = 0} is a codimension 1 affine subspace in *M*_ℝ with a normal oriented vector *v_i*.
- $\mathcal{H} := \{H_1, \ldots, H_m\}$ is a hyperplane arrangement in $M_{\mathbb{R}}$.
- *H* is simple if each nonempty intersection of *k* hyperplanes has codimension *k* and if there are *n* hyperplanes with nonempty intersection
- *H* is smooth if *H* is simple and every *n* linearly independent vectors from {*v*₁,..., *v_m*} span *N*.

・ロト ・ 理 ト ・ ヨ ト ・

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Smooth hyperplane arrangements

- *H_i* := {*x* ∈ *M*_ℝ | ⟨*x*, *v_i*⟩ + α_i = 0} is a codimension 1 affine subspace in *M*_ℝ with a normal oriented vector *v_i*.
- $\mathcal{H} := \{H_1, \ldots, H_m\}$ is a hyperplane arrangement in $M_{\mathbb{R}}$.
- *H* is simple if each nonempty intersection of *k* hyperplanes has codimension *k* and if there are *n* hyperplanes with nonempty intersection
- *H* is smooth if *H* is simple and every *n* linearly independent vectors from {*v*₁,..., *v_m*} span *N*.

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Smooth hyperplane arrangements

- *H_i* := {*x* ∈ *M*_ℝ | ⟨*x*, *v_i*⟩ + α_i = 0} is a codimension 1 affine subspace in *M*_ℝ with a normal oriented vector *v_i*.
- $\mathcal{H} := \{H_1, \ldots, H_m\}$ is a hyperplane arrangement in $M_{\mathbb{R}}$.
- *H* is simple if each nonempty intersection of *k* hyperplanes has codimension *k* and if there are *n* hyperplanes with nonempty intersection
- *H* is smooth if *H* is simple and every *n* linearly independent vectors from {*v*₁,..., *v_m*} span *N*.

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Smooth hyperplane arrangements

- *H_i* := {*x* ∈ *M*_ℝ | ⟨*x*, *v_i*⟩ + α_i = 0} is a codimension 1 affine subspace in *M*_ℝ with a normal oriented vector *v_i*.
- $\mathcal{H} := \{H_1, \ldots, H_m\}$ is a hyperplane arrangement in $M_{\mathbb{R}}$.
- *H* is simple if each nonempty intersection of *k* hyperplanes has codimension *k* and if there are *n* hyperplanes with nonempty intersection
- *H* is smooth if *H* is simple and every *n* linearly independent vectors from {*v*₁,..., *v_m*} span *N*.

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Smooth hyperplane arrangements

- *H_i* := {*x* ∈ *M*_ℝ | ⟨*x*, *v_i*⟩ + α_i = 0} is a codimension 1 affine subspace in *M*_ℝ with a normal oriented vector *v_i*.
- $\mathcal{H} := \{H_1, \ldots, H_m\}$ is a hyperplane arrangement in $M_{\mathbb{R}}$.
- *H* is simple if each nonempty intersection of *k* hyperplanes has codimension *k* and if there are *n* hyperplanes with nonempty intersection
- *H* is smooth if *H* is simple and every *n* linearly independent vectors from {*v*₁,..., *v_m*} span *N*.

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Smooth hyperplane arrangements

- *H_i* := {*x* ∈ *M*_ℝ | ⟨*x*, *v_i*⟩ + α_i = 0} is a codimension 1 affine subspace in *M*_ℝ with a normal oriented vector *v_i*.
- $\mathcal{H} := \{H_1, \ldots, H_m\}$ is a hyperplane arrangement in $M_{\mathbb{R}}$.
- *H* is simple if each nonempty intersection of *k* hyperplanes has codimension *k* and if there are *n* hyperplanes with nonempty intersection
- *H* is smooth if *H* is simple and every *n* linearly independent vectors from {*v*₁,..., *v_m*} span *N*.

ヘロト 人間 とくほとくほとう

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Exact sequences

• Since \mathcal{H} is smooth we have a surjective homomorphism $\rho: N' \longrightarrow N$ where $\rho(e_i) := v_i$ for $1 \le i \le m$.

•
$$N'' := \ker(\rho) \simeq \mathbb{Z}^{m-n}$$
 and $M'' = Hom(N'', \mathbb{Z})$.

• We get exact sequences of lattices:

$$0 \longrightarrow N'' \stackrel{\iota}{\longrightarrow} N' \stackrel{\rho}{\longrightarrow} N \longrightarrow 0$$

$$0 \longrightarrow M \xrightarrow{\rho^*} M' \xrightarrow{\iota^*} M'' \longrightarrow 0 \tag{1}$$

• Since \mathcal{H} is smooth (1) implies that $\alpha := \iota^*(\hat{\alpha}) \neq 0$.

ヘロン ヘアン ヘビン ヘビン

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Exact sequences

- Since \mathcal{H} is smooth we have a surjective homomorphism $\rho: N' \longrightarrow N$ where $\rho(e_i) := v_i$ for $1 \le i \le m$.
- $N'' := \ker(\rho) \simeq \mathbb{Z}^{m-n}$ and $M'' = Hom(N'', \mathbb{Z})$.
- We get exact sequences of lattices:

$$0 \longrightarrow N'' \stackrel{\iota}{\longrightarrow} N' \stackrel{\rho}{\longrightarrow} N \longrightarrow 0$$

$$0 \longrightarrow M \xrightarrow{\rho^*} M' \xrightarrow{\iota^*} M'' \longrightarrow 0 \tag{1}$$

• Since \mathcal{H} is smooth (1) implies that $\alpha := \iota^*(\hat{\alpha}) \neq 0$.

・ロト ・ 理 ト ・ ヨ ト ・

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Exact sequences

۲

- Since \mathcal{H} is smooth we have a surjective homomorphism $\rho: N' \longrightarrow N$ where $\rho(e_i) := v_i$ for $1 \le i \le m$.
- $N'' := \ker(\rho) \simeq \mathbb{Z}^{m-n}$ and $M'' = Hom(N'', \mathbb{Z})$.
- We get exact sequences of lattices:

$$0 \longrightarrow N'' \stackrel{\iota}{\longrightarrow} N' \stackrel{\rho}{\longrightarrow} N \longrightarrow 0$$

$$0 \longrightarrow M \xrightarrow{\rho^*} M' \xrightarrow{\iota^*} M'' \longrightarrow 0 \tag{1}$$

• Since \mathcal{H} is smooth (1) implies that $\alpha := \iota^*(\hat{\alpha}) \neq 0$.

・ロト ・ 理 ト ・ ヨ ト ・

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Exact sequences

۲

- Since \mathcal{H} is smooth we have a surjective homomorphism $\rho: N' \longrightarrow N$ where $\rho(e_i) := v_i$ for $1 \le i \le m$.
- $N'' := \ker(\rho) \simeq \mathbb{Z}^{m-n}$ and $M'' = Hom(N'', \mathbb{Z})$.
- We get exact sequences of lattices:

$$0 \longrightarrow N'' \stackrel{\iota}{\longrightarrow} N' \stackrel{\rho}{\longrightarrow} N \longrightarrow 0$$

$$0 \longrightarrow M \xrightarrow{\rho^*} M' \xrightarrow{\iota^*} M'' \longrightarrow 0 \tag{1}$$

• Since \mathcal{H} is smooth (1) implies that $\alpha := \iota^*(\hat{\alpha}) \neq 0$.

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Exact sequences

۲

- Since \mathcal{H} is smooth we have a surjective homomorphism $\rho: N' \longrightarrow N$ where $\rho(e_i) := v_i$ for $1 \le i \le m$.
- $N'' := \ker(\rho) \simeq \mathbb{Z}^{m-n}$ and $M'' = Hom(N'', \mathbb{Z})$.
- We get exact sequences of lattices:

$$0 \longrightarrow N'' \stackrel{\iota}{\longrightarrow} N' \stackrel{\rho}{\longrightarrow} N \longrightarrow 0$$

$$0 \longrightarrow M \xrightarrow{\rho^*} M' \xrightarrow{\iota^*} M'' \longrightarrow 0 \tag{1}$$

• Since \mathcal{H} is smooth (1) implies that $\alpha := \iota^*(\hat{\alpha}) \neq 0$.

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Exact sequences

۲

- Since \mathcal{H} is smooth we have a surjective homomorphism $\rho: N' \longrightarrow N$ where $\rho(e_i) := v_i$ for $1 \le i \le m$.
- $N'' := \ker(\rho) \simeq \mathbb{Z}^{m-n}$ and $M'' = Hom(N'', \mathbb{Z})$.
- We get exact sequences of lattices:

$$0 \longrightarrow N'' \stackrel{\iota}{\longrightarrow} N' \stackrel{\rho}{\longrightarrow} N \longrightarrow 0$$

$$0 \longrightarrow M \xrightarrow{\rho^*} M' \xrightarrow{\iota^*} M'' \longrightarrow 0 \tag{1}$$

• Since \mathcal{H} is smooth (1) implies that $\alpha := \iota^*(\hat{\alpha}) \neq 0$.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Exact sequences

 We also get the corresponding exact sequences of vector spaces:

$$0 \longrightarrow N_{\mathbb{R}}'' \xrightarrow{\iota_{\mathbb{R}}} N_{\mathbb{R}}' \xrightarrow{\rho_{\mathbb{R}}} N_{\mathbb{R}} \longrightarrow 0$$

$$0 \longrightarrow M_{\mathbb{R}} \stackrel{\rho_{\mathbb{R}}^{*}}{\longrightarrow} M_{\mathbb{R}}^{\prime} \stackrel{\iota_{\mathbb{R}}^{*}}{\longrightarrow} M_{\mathbb{R}}^{\prime\prime} \longrightarrow 0$$

• Induced exact sequence of tori:

 $1 \longrightarrow G := (S^1)^{m-n} \hookrightarrow T' := (S^1)^m \longrightarrow T := (S^1)^n \longrightarrow 1$

イロト 不得 トイヨト イヨト 二日 二

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Exact sequences

۲

 We also get the corresponding exact sequences of vector spaces:

$$0 \longrightarrow \textit{N}_{\mathbb{R}}'' \xrightarrow{\iota_{\mathbb{R}}} \textit{N}_{\mathbb{R}}' \xrightarrow{\rho_{\mathbb{R}}} \textit{N}_{\mathbb{R}} \longrightarrow 0$$

$$0 \longrightarrow M_{\mathbb{R}} \stackrel{\rho_{\mathbb{R}}^*}{\longrightarrow} M_{\mathbb{R}}' \stackrel{\iota_{\mathbb{R}}^*}{\longrightarrow} M_{\mathbb{R}}'' \longrightarrow 0$$

• Induced exact sequence of tori:

 $1 \longrightarrow G := (S^1)^{m-n} \hookrightarrow T' := (S^1)^m \longrightarrow T := (S^1)^n \longrightarrow 1$

イロン 不得 とくほ とくほ とうほ

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Exact sequences

۲

٥

 We also get the corresponding exact sequences of vector spaces:

$$0 \longrightarrow \mathit{N}_{\mathbb{R}}'' \xrightarrow{\iota_{\mathbb{R}}} \mathit{N}_{\mathbb{R}}' \xrightarrow{
ho_{\mathbb{R}}} \mathit{N}_{\mathbb{R}} \longrightarrow 0$$

$$0 \longrightarrow M_{\mathbb{R}} \xrightarrow{\rho_{\mathbb{R}}^{*}} M_{\mathbb{R}}' \xrightarrow{\iota_{\mathbb{R}}^{*}} M_{\mathbb{R}}'' \longrightarrow 0$$

• Induced exact sequence of tori:

 $1 \longrightarrow G := (S^1)^{m-n} \hookrightarrow T' := (S^1)^m \longrightarrow T := (S^1)^n \longrightarrow 1$

イロン 不得 とくほ とくほ とうほ

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Exact sequences

۲

٥

 We also get the corresponding exact sequences of vector spaces:

$$0 \longrightarrow \mathit{N}_{\mathbb{R}}'' \xrightarrow{\iota_{\mathbb{R}}} \mathit{N}_{\mathbb{R}}' \xrightarrow{
ho_{\mathbb{R}}} \mathit{N}_{\mathbb{R}} \longrightarrow 0$$

$$0 \longrightarrow M_{\mathbb{R}} \xrightarrow{\rho_{\mathbb{R}}^*} M'_{\mathbb{R}} \xrightarrow{\iota_{\mathbb{R}}^*} M''_{\mathbb{R}} \longrightarrow 0$$

Induced exact sequence of tori:

$$1 \longrightarrow G := (S^1)^{m-n} \hookrightarrow T' := (S^1)^m \longrightarrow T := (S^1)^n \longrightarrow 1$$

ヘロト ヘワト ヘビト ヘビト

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

HyperKalher structure on \mathbb{H}^m

- Consider ℍ^m with 3 complex structures *I*, *J*, *K* induced by multiplication by *i*, *j* and *k* respectively satisfying the quaternionic relations.
- The diagonal torus T' = (S¹)^m ⊆ Sp(m) ⊆ SO(4m) acts on ℍ^m ≃ ℝ^{4m} preserving the Riemannian metric and the Kahler forms ω_I, ω_J, ω_K corresponding to the complex structures *I*, *J* and *K* respectively.

۲

$$\mu = (\mu_I, \mu_J, \mu_K) : \mathbb{H}^m \longrightarrow (M'_{\mathbb{R}})^3$$

denotes the hyperKähler moment map for the T'-action.

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

HyperKalher structure on \mathbb{H}^m

- Consider ℍ^m with 3 complex structures *I*, *J*, *K* induced by multiplication by *i*, *j* and *k* respectively satisfying the quaternionic relations.
- The diagonal torus *T'* = (*S*¹)^m ⊆ *Sp*(*m*) ⊆ *SO*(4*m*) acts on *H^m* ≃ *R*^{4m} preserving the Riemannian metric and the Kahler forms ω_I, ω_J, ω_K corresponding to the complex structures *I*, *J* and *K* respectively.

$$\mu = (\mu_I, \mu_J, \mu_K) : \mathbb{H}^m \longrightarrow (M'_{\mathbb{R}})^3$$

denotes the hyperKähler moment map for the T'-action.

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

HyperKalher structure on \mathbb{H}^m

- Consider ℍ^m with 3 complex structures *I*, *J*, *K* induced by multiplication by *i*, *j* and *k* respectively satisfying the quaternionic relations.
- The diagonal torus *T'* = (*S*¹)^m ⊆ *Sp*(*m*) ⊆ *SO*(4*m*) acts on *H^m* ≃ *R*^{4m} preserving the Riemannian metric and the Kahler forms ω_I, ω_J, ω_K corresponding to the complex structures *I*, *J* and *K* respectively.

۲

$$\mu = (\mu_I, \mu_J, \mu_K) : \mathbb{H}^m \longrightarrow (M'_{\mathbb{R}})^3$$

denotes the hyperKähler moment map for the T'-action.

ヘロン ヘアン ヘビン ヘビン

Definition of toric hyperKähler manifold

- This further induces an action of $G \hookrightarrow T'$ on \mathbb{H}^m and $\mu_G := \iota_{\mathbb{R}}^* \circ \mu : \mathbb{H}^m \longrightarrow (M_{\mathbb{R}}'')^3$ is the moment map for the *G*-action on \mathbb{H}^m .
- Since $\alpha \neq 0$, $(\alpha, 0, 0)$ is a regular value of μ_{G} .
- Since \mathcal{H} is smooth, *G* acts freely on $\mu_G^{-1}(\alpha, 0, 0)$ and $\mu_G^{-1}(\alpha, 0, 0)/G$ is a smooth manifold of dimension 4*n*.
- $X := \mu_G^{-1}(\alpha, 0, 0)/G$ is called toric hyperKähler manifold equipped with an action of the *n*-dimensional torus T = T'/G which preserves the hyperKähler structure i.e the induced Riemannian metric and complex structures $I_{\alpha}, J_{\alpha}, K_{\alpha}$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Definition of toric hyperKähler manifold

- This further induces an action of $G \hookrightarrow T'$ on \mathbb{H}^m and $\mu_G := \iota_{\mathbb{R}}^* \circ \mu : \mathbb{H}^m \longrightarrow (M_{\mathbb{R}}'')^3$ is the moment map for the *G*-action on \mathbb{H}^m .
- Since $\alpha \neq 0$, (α , 0, 0) is a regular value of μ_{G} .
- Since \mathcal{H} is smooth, *G* acts freely on $\mu_G^{-1}(\alpha, 0, 0)$ and $\mu_G^{-1}(\alpha, 0, 0)/G$ is a smooth manifold of dimension 4*n*.
- $X := \mu_G^{-1}(\alpha, 0, 0)/G$ is called toric hyperKähler manifold equipped with an action of the *n*-dimensional torus T = T'/G which preserves the hyperKähler structure i.e the induced Riemannian metric and complex structures $I_{\alpha}, J_{\alpha}, K_{\alpha}$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Definition of toric hyperKähler manifold

- This further induces an action of $G \hookrightarrow T'$ on \mathbb{H}^m and $\mu_G := \iota_{\mathbb{R}}^* \circ \mu : \mathbb{H}^m \longrightarrow (M_{\mathbb{R}}'')^3$ is the moment map for the *G*-action on \mathbb{H}^m .
- Since $\alpha \neq 0$, (α , 0, 0) is a regular value of μ_{G} .
- Since \mathcal{H} is smooth, *G* acts freely on $\mu_G^{-1}(\alpha, 0, 0)$ and $\mu_G^{-1}(\alpha, 0, 0)/G$ is a smooth manifold of dimension 4*n*.
- $X := \mu_G^{-1}(\alpha, 0, 0)/G$ is called toric hyperKähler manifold equipped with an action of the *n*-dimensional torus T = T'/G which preserves the hyperKähler structure i.e the induced Riemannian metric and complex structures $I_{\alpha}, J_{\alpha}, K_{\alpha}$.

ヘロア 人間 アメヨア 人口 ア

Definition of toric hyperKähler manifold

- This further induces an action of $G \hookrightarrow T'$ on \mathbb{H}^m and $\mu_G := \iota_{\mathbb{R}}^* \circ \mu : \mathbb{H}^m \longrightarrow (M_{\mathbb{R}}'')^3$ is the moment map for the *G*-action on \mathbb{H}^m .
- Since $\alpha \neq 0$, (α , 0, 0) is a regular value of μ_{G} .
- Since \mathcal{H} is smooth, *G* acts freely on $\mu_G^{-1}(\alpha, 0, 0)$ and $\mu_G^{-1}(\alpha, 0, 0)/G$ is a smooth manifold of dimension 4*n*.
- $X := \mu_G^{-1}(\alpha, 0, 0)/G$ is called toric hyperKähler manifold equipped with an action of the *n*-dimensional torus T = T'/G which preserves the hyperKähler structure i.e the induced Riemannian metric and complex structures $I_{\alpha}, J_{\alpha}, K_{\alpha}$.

ヘロア 人間 アメヨア 人口 ア

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Complex line bundles on X

- Let \mathbb{C}_s be the 1-dimensional complex vector space with *G*-action induced by $G \hookrightarrow T' \xrightarrow{p_s} S^1$.
- L_s := μ_G⁻¹(α, 0, 0) ×_G C_s is a complex line bundle on X which is holomorphic with respect to the complex structure *l*_α on X.

ヘロン ヘアン ヘビン ヘビン

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Complex line bundles on X

- Let \mathbb{C}_s be the 1-dimensional complex vector space with *G*-action induced by $G \hookrightarrow T' \xrightarrow{p_s} S^1$.
- L_s := μ_G⁻¹(α, 0, 0) ×_G C_s is a complex line bundle on X which is holomorphic with respect to the complex structure *l*_α on X.

くロト (過) (目) (日)

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Cohomology ring presentation

- Let X be a toric hyperKähler manifold
 \$\mathcal{H} = {H_1, ..., H_m}\$ be the associated smooth hyperplane arrangement
- Ideal J in $\mathbb{Z}[x_1, \ldots, x_m]$ generated by

•
$$\prod_{s \in I} x_s$$
 whenever $\bigcap_{s \in I} H_s = \emptyset, I \subseteq [1, m]$

•
$$\sum_{s=1} \langle u, v_s \rangle x_s$$
, $u \in M$.

• **Theorem**(Konno) There is an isomorphism of \mathbb{Z} -algebras $\phi : \mathbb{Z}[x_1, \ldots, x_m]/J \longrightarrow H^*(X; \mathbb{Z})$ that sends x_s to $c_1(L_s)$ for $1 \le s \le m$.

イロン 不良 とくほう 不良 とうほ

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Cohomology ring presentation

- Let X be a toric hyperKähler manifold
 \$\mathcal{H} = {H_1, ..., H_m}\$ be the associated smooth hyperplane arrangement
- Ideal J in $\mathbb{Z}[x_1, \ldots, x_m]$ generated by
 - $\prod_{s \in I} x_s$ whenever $\bigcap_{s \in I} H_s = \emptyset, I \subseteq [1, m]$

•
$$\sum_{s=1} \langle u, v_s \rangle x_s$$
, $u \in M$.

• **Theorem**(Konno) There is an isomorphism of \mathbb{Z} -algebras $\phi : \mathbb{Z}[x_1, \ldots, x_m]/J \longrightarrow H^*(X; \mathbb{Z})$ that sends x_s to $c_1(L_s)$ for $1 \le s \le m$.

イロン 不良 とくほう 不良 とうほ

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Cohomology ring presentation

- Let X be a toric hyperKähler manifold
 \$\mathcal{H} = {H_1, ..., H_m}\$ be the associated smooth hyperplane arrangement
- Ideal J in $\mathbb{Z}[x_1, \ldots, x_m]$ generated by
 - $\prod_{s \in I} x_s$ whenever $\bigcap_{s \in I} H_s = \emptyset$, $I \subseteq [1, m]$ • $\sum_{s \in I} \langle u, v_s \rangle x_s$, $u \in M$.
- **Theorem**(Konno) There is an isomorphism of \mathbb{Z} -algebras $\phi : \mathbb{Z}[x_1, \ldots, x_m]/J \longrightarrow H^*(X; \mathbb{Z})$ that sends x_s to $c_1(L_s)$ for $1 \le s \le m$.

・ロト ・ 理 ト ・ ヨ ト ・

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Cohomology ring presentation

- Let X be a toric hyperKähler manifold
 \$\mathcal{H} = {H_1, ..., H_m}\$ be the associated smooth hyperplane arrangement
- Ideal J in $\mathbb{Z}[x_1, \ldots, x_m]$ generated by
 - $\prod_{\substack{s \in I \\ m}} x_s$ whenever $\bigcap_{s \in I} H_s = \emptyset, I \subseteq [1, m]$

•
$$\sum_{s=1} \langle u, v_s \rangle x_s$$
, $u \in M$.

• **Theorem**(Konno) There is an isomorphism of \mathbb{Z} -algebras $\phi : \mathbb{Z}[x_1, \ldots, x_m]/J \longrightarrow H^*(X; \mathbb{Z})$ that sends x_s to $c_1(L_s)$ for $1 \le s \le m$.

イロン 不良 とくほう 不良 とうほ

Construction of toric hyperKähler manifolds Cohomology ring of toric hyperKähler manifolds

Cohomology ring presentation

- Let X be a toric hyperKähler manifold
 \$\mathcal{H} = {H_1, ..., H_m}\$ be the associated smooth hyperplane arrangement
- Ideal J in $\mathbb{Z}[x_1, \ldots, x_m]$ generated by
 - $\prod_{s \in I} x_s$ whenever $\bigcap_{s \in I} H_s = \emptyset, I \subseteq [1, m]$
 - $\sum_{s=1} \langle u, v_s \rangle x_s$, $u \in M$.
- **Theorem**(Konno) There is an isomorphism of \mathbb{Z} -algebras $\phi : \mathbb{Z}[x_1, \ldots, x_m]/J \longrightarrow H^*(X; \mathbb{Z})$ that sends x_s to $c_1(L_s)$ for $1 \le s \le m$.

・ロト ・ 理 ト ・ ヨ ト ・

Topological K-ring presentation

- Let X be a toric hyperKähler manifold
 \$\mathcal{H} = {H_1, ..., H_m}\$- associated smooth hyperplane arrangement
- Ideal J' in $\mathbb{Z}[x_1, \dots, x_m]$ generated by • $\prod_{s \in I} x_s$ whenever $\bigcap_{s \in I} H_s = \emptyset, I \subseteq [1, m]$ • $\prod_{s \mid \langle u, v_s \rangle > 0} (1 - x_s)^{\langle u, v_s \rangle} - \prod_{s \mid \langle u, v_s \rangle < 0} (1 - x_s)^{-\langle u, v_s \rangle}, u \in M.$
- **Theorem**([U]) There is an isomorphism of \mathbb{Z} -algebras $\phi : \mathbb{Z}[x_1, \ldots, x_m]/J' \longrightarrow K^*(X)$ that sends x_s to $1 [L_s]$ for $1 \le s \le m$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Topological K-ring presentation

- Let X be a toric hyperKähler manifold
 \$\mathcal{H} = {H_1, ..., H_m}\$- associated smooth hyperplane arrangement
- Ideal J' in $\mathbb{Z}[x_1, \ldots, x_m]$ generated by

•
$$\prod_{s \in I} x_s \text{ whenever } \bigcap_{s \in I} H_s = \emptyset, I \subseteq [1, m]$$
•
$$\prod_{s \mid \langle u, v_s \rangle > 0} (1 - x_s)^{\langle u, v_s \rangle} - \prod_{s \mid \langle u, v_s \rangle < 0} (1 - x_s)^{-\langle u, v_s \rangle}, u \in M.$$

• **Theorem**([U]) There is an isomorphism of \mathbb{Z} -algebras $\phi : \mathbb{Z}[x_1, \ldots, x_m]/J' \longrightarrow K^*(X)$ that sends x_s to $1 - [L_s]$ for $1 \le s \le m$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Topological K-ring presentation

- Let X be a toric hyperKähler manifold
 \$\mathcal{H} = {H_1, ..., H_m}\$- associated smooth hyperplane arrangement
- Ideal J' in $\mathbb{Z}[x_1, \ldots, x_m]$ generated by
 - $\prod_{s \in I} x_s \text{ whenever } \bigcap_{s \in I} H_s = \emptyset, I \subseteq [1, m]$ • $\prod_{s \mid \langle u, v_s \rangle > 0} (1 - x_s)^{\langle u, v_s \rangle} - \prod_{s \mid \langle u, v_s \rangle < 0} (1 - x_s)^{-\langle u, v_s \rangle}, u \in M.$
- **Theorem**([U]) There is an isomorphism of \mathbb{Z} -algebras $\phi : \mathbb{Z}[x_1, \ldots, x_m]/J' \longrightarrow K^*(X)$ that sends x_s to $1 [L_s]$ for $1 \le s \le m$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Topological K-ring presentation

- Let X be a toric hyperKähler manifold
 \$\mathcal{H} = {H_1, ..., H_m}\$- associated smooth hyperplane arrangement
- Ideal J' in $\mathbb{Z}[x_1, \ldots, x_m]$ generated by
 - $\prod_{s \in I} x_s \text{ whenever } \bigcap_{s \in I} H_s = \emptyset, I \subseteq [1, m]$ • $\prod_{s \mid \langle u, v_s \rangle > 0} (1 - x_s)^{\langle u, v_s \rangle} - \prod_{s \mid \langle u, v_s \rangle < 0} (1 - x_s)^{-\langle u, v_s \rangle}, u \in M.$
- **Theorem**([U]) There is an isomorphism of \mathbb{Z} -algebras $\phi : \mathbb{Z}[x_1, \ldots, x_m]/J' \longrightarrow K^*(X)$ that sends x_s to $1 [L_s]$ for $1 \le s \le m$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Topological K-ring presentation

- Let X be a toric hyperKähler manifold
 \$\mathcal{H} = {H_1, ..., H_m}\$- associated smooth hyperplane arrangement
- Ideal J' in $\mathbb{Z}[x_1, \ldots, x_m]$ generated by
 - $\prod_{s \in I} x_s \text{ whenever } \bigcap_{s \in I} H_s = \emptyset, I \subseteq [1, m]$ $\prod_{s \mid \langle u, v_s \rangle > 0} (1 x_s)^{\langle u, v_s \rangle} \prod_{s \mid \langle u, v_s \rangle < 0} (1 x_s)^{-\langle u, v_s \rangle}, u \in M.$
- **Theorem**([U]) There is an isomorphism of \mathbb{Z} -algebras $\phi : \mathbb{Z}[x_1, \ldots, x_m]/J' \longrightarrow K^*(X)$ that sends x_s to $1 [L_s]$ for $1 \le s \le m$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Idea of proofs

- Although X is non-compact in general it is homotopy equivalent to its "core" Core(X) which is a finite union of compact toric submanifolds. (Core(X) is a strong deformation retract of X)
- We can apply the *Atiyah Hirzebruch spectral sequence* which degenerates in this setting since the integral odd cohomology vanishes.

$$E_2^{p,q} = H^p(X, K^q(pt)) \Rightarrow K^{p+q}(X).$$

ヘロト ヘアト ヘビト ヘビト

æ

Idea of proofs

- Although X is non-compact in general it is homotopy equivalent to its "core" Core(X) which is a finite union of compact toric submanifolds. (Core(X) is a strong deformation retract of X)
- We can apply the *Atiyah Hirzebruch spectral sequence* which degenerates in this setting since the integral odd cohomology vanishes.

$$E_2^{p,q} = H^p(X, K^q(pt)) \Rightarrow K^{p+q}(X).$$

ヘロト 人間 ト ヘヨト ヘヨト

Idea of proofs

- We show (by methods similar to that used for toric and torus manifolds) that K^{*}(X) is generated by the the isomorphism classes of the complex line bundles whose first Chern classes generate the cohomology ring. (Since H²(X; Z) generates H^{*}(X; Z).)
- The presentation for $K^*(X)$ again follows from that of the cohomology ring similar to the case of toric manifolds.

ヘロト ヘ戸ト ヘヨト ヘヨト

Idea of proofs

- We show (by methods similar to that used for toric and torus manifolds) that K^{*}(X) is generated by the the isomorphism classes of the complex line bundles whose first Chern classes generate the cohomology ring. (Since H²(X; Z) generates H^{*}(X; Z).)
- The presentation for K^{*}(X) again follows from that of the cohomology ring similar to the case of toric manifolds.

ヘロト ヘワト ヘビト ヘビト

Cotangent bundle of complex projective space

Example

The cotangent bundle of the complex projective space $T^*(\mathbb{CP}^n)$ is a toric hyperKähler manifold associated to the hyperplane arrangement $\mathcal{H} = \{H_1, \ldots, H_n, H_{n+1}\}$ in \mathbb{R}^n consisting of

$$H_j = \{(a_1, \ldots, a_n) \mid a_j = -1\}$$

for $1 \le j \le n$ and $H_{n+1} = \{(a_1, \ldots, a_n) \mid a_1 + \cdots + a_n = 1\}.$

・ロト ・ 理 ト ・ ヨ ト ・

K-ring of $T^*(\mathbb{CP}^n)$

Example

- J' is the ideal in $\mathbb{Z}[x_1, \ldots, x_{n+1}]$ generated by
 - the monomial x₁ · x₂ · · · x_{n+1} since l = [1, n + 1] is the only subset such that H₁ ∩ · · · ∩ H_{n+1} = Ø

 and the *n* relations (1 − x_j) − (1 − x_{n+1}) for 1 ≤ j ≤ n corresponding to the basis e^{*}₁,..., e^{*}_n.

• $\mathbb{Z}[x]/(1-x)^{n+1} \longrightarrow K^*(X)$ where $x \mapsto 1 - [L_{n+1}]$ defines an isomorphism of \mathbb{Z} -algebras.

イロト 不得 とくほ とくほ とう

3

K-ring of $T^*(\mathbb{CP}^n)$

Example

- J' is the ideal in $\mathbb{Z}[x_1, \ldots, x_{n+1}]$ generated by
 - the monomial x₁ · x₂ · · · x_{n+1} since I = [1, n + 1] is the only subset such that H₁ ∩ · · · ∩ H_{n+1} = Ø
 - and the *n* relations $(1 x_j) (1 x_{n+1})$ for $1 \le j \le n$ corresponding to the basis e_1^*, \ldots, e_n^* .
- $\mathbb{Z}[x]/(1-x)^{n+1} \longrightarrow K^*(X)$ where $x \mapsto 1 [L_{n+1}]$ defines an isomorphism of \mathbb{Z} -algebras.

イロト 不得 とくほ とくほ とう

3

K-ring of $T^*(\mathbb{CP}^n)$

Example

- J' is the ideal in $\mathbb{Z}[x_1, \ldots, x_{n+1}]$ generated by
 - the monomial $x_1 \cdot x_2 \cdots x_{n+1}$ since I = [1, n+1] is the only subset such that $H_1 \cap \cdots \cap H_{n+1} = \emptyset$

• and the *n* relations $(1 - x_j) - (1 - x_{n+1})$ for $1 \le j \le n$ corresponding to the basis e_1^*, \ldots, e_n^* .

• $\mathbb{Z}[x]/(1-x)^{n+1} \longrightarrow K^*(X)$ where $x \mapsto 1 - [L_{n+1}]$ defines an isomorphism of \mathbb{Z} -algebras.

イロン 不得 とくほ とくほう 一日

K-ring of $T^*(\mathbb{CP}^n)$

Example

- J' is the ideal in $\mathbb{Z}[x_1, \ldots, x_{n+1}]$ generated by
 - the monomial $x_1 \cdot x_2 \cdots x_{n+1}$ since I = [1, n+1] is the only subset such that $H_1 \cap \cdots \cap H_{n+1} = \emptyset$
 - and the *n* relations $(1 x_j) (1 x_{n+1})$ for $1 \le j \le n$ corresponding to the basis e_1^*, \ldots, e_n^* .
- $\mathbb{Z}[x]/(1-x)^{n+1} \longrightarrow K^*(X)$ where $x \mapsto 1 [L_{n+1}]$ defines an isomorphism of \mathbb{Z} -algebras.

イロン 不得 とくほ とくほ とうほ

K-ring of $T^*(\mathbb{CP}^n)$

Example

- J' is the ideal in $\mathbb{Z}[x_1, \ldots, x_{n+1}]$ generated by
 - the monomial $x_1 \cdot x_2 \cdots x_{n+1}$ since I = [1, n+1] is the only subset such that $H_1 \cap \cdots \cap H_{n+1} = \emptyset$
 - and the *n* relations $(1 x_j) (1 x_{n+1})$ for $1 \le j \le n$ corresponding to the basis e_1^*, \ldots, e_n^* .
- $\mathbb{Z}[x]/(1-x)^{n+1} \longrightarrow K^*(X)$ where $x \mapsto 1 [L_{n+1}]$ defines an isomorphism of \mathbb{Z} -algebras.

イロン 不得 とくほ とくほ とうほ

- R. Bielawski and A. Dancer, The geometry and topology of toric hyperKähler manifolds, *Comm. Anal. Geom.* 8 (2000), no. 4, 727–760.
- T. Hausel and B. Sturmfels, Toric HyperKähler Varieties, *Documenta Math.* **7**, (2002), 495–534.
- H. Konno: Cohomology rings of toric hyperKähler manifolds, *Internat. J. Math.***11** (2000), no. 8, 1001–1026.
- S. Kuroki, Equivariant cohomology distinguishes the geometric structures of toric hyperKähler manifolds, *Proceedings of the Steklov Institute of Mathematics*, **275** (1) (2011), 251-283.
- V. Uma, K-theory of hyperKähler toric manifolds arXiv.1808.03008

- R. Bielawski and A. Dancer, The geometry and topology of toric hyperKähler manifolds, *Comm. Anal. Geom.* 8 (2000), no. 4, 727–760.
- T. Hausel and B. Sturmfels, Toric HyperKähler Varieties, *Documenta Math.* **7**, (2002), 495–534.
- H. Konno: Cohomology rings of toric hyperKähler manifolds, *Internat. J. Math.***11** (2000), no. 8, 1001–1026.
- S. Kuroki, Equivariant cohomology distinguishes the geometric structures of toric hyperKähler manifolds, *Proceedings of the Steklov Institute of Mathematics*, **275** (1) (2011), 251-283.
- V. Uma, K-theory of hyperKähler toric manifolds arXiv.1808.03008

- R. Bielawski and A. Dancer, The geometry and topology of toric hyperKähler manifolds, *Comm. Anal. Geom.* 8 (2000), no. 4, 727–760.
- T. Hausel and B. Sturmfels, Toric HyperKähler Varieties, *Documenta Math.* **7**, (2002), 495–534.
- H. Konno: Cohomology rings of toric hyperKähler manifolds, *Internat. J. Math.***11** (2000), no. 8, 1001–1026.
- S. Kuroki, Equivariant cohomology distinguishes the geometric structures of toric hyperKähler manifolds, *Proceedings of the Steklov Institute of Mathematics*, **275** (1) (2011), 251-283.
- V. Uma, K-theory of hyperKähler toric manifolds arXiv.1808.03008

References

- R. Bielawski and A. Dancer, The geometry and topology of toric hyperKähler manifolds, *Comm. Anal. Geom.* 8 (2000), no. 4, 727–760.
- T. Hausel and B. Sturmfels, Toric HyperKähler Varieties, *Documenta Math.* **7**, (2002), 495–534.
- H. Konno: Cohomology rings of toric hyperKähler manifolds, *Internat. J. Math.***11** (2000), no. 8, 1001–1026.
- S. Kuroki, Equivariant cohomology distinguishes the geometric structures of toric hyperKähler manifolds, *Proceedings of the Steklov Institute of Mathematics*, 275 (1) (2011), 251-283.

V. Uma, K-theory of hyperKähler toric manifolds arXiv.1808.03008

ъ

- R. Bielawski and A. Dancer, The geometry and topology of toric hyperKähler manifolds, *Comm. Anal. Geom.* 8 (2000), no. 4, 727–760.
- T. Hausel and B. Sturmfels, Toric HyperKähler Varieties, *Documenta Math.* **7**, (2002), 495–534.
- H. Konno: Cohomology rings of toric hyperKähler manifolds, *Internat. J. Math.***11** (2000), no. 8, 1001–1026.
- S. Kuroki, Equivariant cohomology distinguishes the geometric structures of toric hyperKähler manifolds, *Proceedings of the Steklov Institute of Mathematics*, 275 (1) (2011), 251-283.
- V. Uma, K-theory of hyperKähler toric manifolds arXiv.1808.03008