# Some new insights into $T^{n}$-action on the Grassmannians $G_{n, 2}$ 

Svjetlana Terzić<br>University of Montenegro

Toric topology 2019, Okayama, November 18, 2019.

## Complex Grassmann manifolds $G_{n, 2}=G_{n, 2}(\mathbb{C})$

$\mathbb{C}^{n}$ - $n$-dimensional complex vector space with fixed basis.
$G_{n, 2}$ - 2-dimensional complex subspaces in $\mathbb{C}^{n}$,
$G_{n, 2}=U(n) / U(2) \times U(n-2)$
The coordinate-wise $\mathbb{T}^{n}$ - action on $\mathbb{C}^{n}$ induces $\mathbb{T}^{n}$ - action on $G_{n, 2}$.
This action is not effective $-T^{n-1}=\mathbb{T}^{n} / \Delta$ acts effectively.
$\operatorname{dim} G_{n, 2}=4(n-2), \quad d=2(n-2)-(n-1)=n-3$ - complexity of $T^{n-1}$-action;
$d \geq 2$ for $n \geq 5$.
$\mathbb{T}^{n}$-action extends to coordinate-wise $\left(\mathbb{C}^{*}\right)^{n}$-action on $G_{n, 2}$

## Plücker embedding

The Plücker embedding $G_{n, 2} \rightarrow \mathbb{C} P^{N-1}, N=\binom{n}{2}$, is given by

$$
L \rightarrow P(L)=\left(P_{I}\left(A_{L}\right), I \subset\{1, \ldots n\},|I|=2\right),
$$

$P_{l}\left(A_{L}\right)$ - Plücker coordinates of $L$ in a fixed basis.
Consider the representation

$$
\rho_{n, 2}: \mathbb{T}^{n} \rightarrow \mathbb{T}^{N}, \quad N=\binom{n}{2},
$$

given by the second exterior power

$$
\left(t_{1}, \ldots, t_{n}\right) \rightarrow\left(t_{1} t_{2}, \ldots, t_{n-1} t_{n}\right)
$$

$\rho_{n, 2}$ defines the action $\mathbb{T}^{n}$ on $\mathbb{C} P^{N-1}$.
The Plücker embedding is equivariant for the representation $\rho_{n, 2}$ :

$$
\mathbb{T}^{n} \curvearrowright G_{n, 2} \rightarrow \mathbb{C} P^{N-1} \curvearrowleft \mathbb{T}^{n}
$$

## Moment map

The weight vectors of the representation $\rho_{n, 2}$ are:

$$
\Lambda_{I} \in \mathbb{R}^{n}, \quad\left(\Lambda_{l}\right)_{j}=1 \text { for } j \in I, \quad\left(\Lambda_{l}\right)_{j}=0 \text { for } j \notin I
$$

where $I \subset\{1, \ldots, n\},|I|=2$ and $\mathbb{R}^{n}$ is with a fixed basis.
$\Lambda_{\text {, }}$ has 1 at 2 places and it has 0 at the other $(n-2)$ places.
The moment map $\mu: G_{n, 2} \rightarrow \mathbb{R}^{n}$ is defined by

$$
\mu(L)=\frac{1}{|P(L)|^{2}} \sum\left|P_{l}\left(A_{L}\right)\right|^{2} \Lambda_{l}, \quad|P(L)|^{2}=\sum\left|P_{l}\left(A_{L}\right)\right|^{2}
$$

where the sum goes over the subsets $I \subset\{1, \ldots, n\},|I|=2$.

- $\mu$ is $\mathbb{T}^{n}$-invariant
- $\operatorname{Im} \mu=$ convexhull $\left(\Lambda_{l}\right)=\Delta_{n, 2}$ - hypersimplex.
- $\Delta_{n, k}$ is in the hyperplane $x_{1}+\cdots+x_{n}=2$ in $\mathbb{R}^{n}, \operatorname{dim} \Delta_{n, 2}=n-1$.


## Strata on $G_{n, 2}$

Let $M_{i j}=\left\{L \in G_{n, 2} \mid P_{i j}(L) \neq 0\right\}, \quad i, j \in\{1, \ldots, n\}, i<j$.

- $M_{i j}$ is an open and dense set in $G_{n, 2}$ and $G_{n, 2}=\bigcup M_{i j}$.
- $M_{i j}$ contains exactly one fixed point $x_{i j}$
- Set $Y_{i j}=G_{n, 2} \backslash M_{i j}$.

Let $\sigma \subset\{\{i, j\}, i, j \in\{1, \ldots, n\}, i \neq j\}$ and define the stratum $W_{\sigma}$ by

$$
W_{\sigma}=\left(\cap_{\{i, j\} \in \sigma} M_{i j}\right) \cap\left(\cap_{\{i, j\} \notin \sigma} Y_{i j}\right) \text { if this intersection is nonempty. }
$$

The main stratum is $W=\cap_{\{i, j\} \in\left\{\binom{n}{2}\right\}} M_{l}$ - an open and dense set in $G_{n, 2}$.

- $W_{\sigma} \cap W_{\sigma^{\prime}}=\emptyset$ for $\sigma \neq \sigma^{\prime}$,
- $W_{\sigma}$ is $\mathbb{T}^{n}$ - invariant, $G_{n, 2}=\cup_{\sigma} W_{\sigma}$


## Strata on $G_{n, 2}$

## Lemma

$$
\mu\left(W_{\sigma}\right)=\stackrel{\circ}{P}_{\sigma}, \quad P_{\sigma}=\operatorname{convhull}\left(\Lambda_{i j},\{i, j\} \in \sigma\right)
$$

$P_{\sigma}$ - an admissible polytope
$\left\{W_{\sigma}\right\}$ coincide with the strata as defined by Gel'fand-Serganova:

$$
W_{\sigma}=\left\{L \in G_{n, 2}: \mu\left(\overline{\mathbb{C}^{*} \cdot L}\right)=P_{\sigma}\right\}
$$

## Theorem

All points from $W_{\sigma}$ have the same stabilizer $T_{\sigma}$.

Torus $T^{\sigma}=T^{n} / T_{\sigma}$ acts freely on $W_{\sigma}$.
Moment map decomposes as $\mu: W_{\sigma} \rightarrow W_{\sigma} / T^{\sigma} \xrightarrow{\hat{\mu}} \stackrel{\circ}{P}_{\sigma}$.

## Theorem

$\hat{\mu}: W_{\sigma} / T^{\sigma} \rightarrow \stackrel{\circ}{P}_{\sigma}$ is a locally trivial fiber bundle with a fiber an open algebraic manifold $F_{\sigma}$. Thus,

$$
W_{\sigma} / T^{\sigma} \cong \stackrel{\circ}{P}_{\sigma} \times F_{\sigma}
$$

$F_{\sigma}$ - the space of parameter for $W_{\sigma}$;

## Admissible polytopes for $G_{n, 2}$

- $\operatorname{dim} \Delta_{n, 2}=n-1$
- $\partial \Delta_{n, 2}=\left(\cup_{n} \Delta^{n-2}\right) \cup\left(\cup_{n} \Delta_{n-1,2}\right)$
- Admissible polytope: $P_{\sigma}=\mu\left(\overline{\mathbb{C}^{n} \cdot L}\right)$ for $L \in G_{n, 2}$

```
Proposition
    If }\operatorname{dim}\mp@subsup{P}{\sigma}{}\leqn-3\mathrm{ then }\mp@subsup{P}{\sigma}{}\subset\partial\mp@subsup{\Delta}{n,2}{}
```


## Admissible polytypes in dimension $n-2$

Let $\operatorname{dim} P_{\sigma}=n-2$ and $P_{\sigma} \subset \partial \Delta_{n, 2}$ :

- $P_{\sigma}=\Delta^{n-2}$ or
- $P_{\sigma} \subseteq \Delta_{n-1,2}$ is an admissible polytope for $G_{n-1,2}$.

Let $\mu_{j}=p r_{j} \circ \mu$ and $p r_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}_{j}^{1}$ - projection.
Lemma. If $P_{\sigma} \subset \partial \Delta_{n, 2}$ then $\mu_{j}\left(P_{\sigma}\right)=0$ or $\mu_{j}\left(P_{\sigma}\right)=1$ for some $1 \leq j \leq n$.

## Interior admissible ( $n-2$ )- polytopes

Let $P_{\sigma} \cap \stackrel{\circ}{\Delta}_{n, 2} \neq \emptyset$ - interior admissible polytope
$\Pi_{i j}$ the set of planes of dimension $n-2$ such that

- the vertex $\Lambda_{i j} \in \alpha_{i j}$ for any $\alpha_{i j} \in \Pi_{i j}$,
- $\alpha_{i j}$ is paralel to $n-2$ edges of $\Delta_{n, 2}$ which are incident to $\Lambda_{i j}$
- $\alpha_{i j} \cap{\stackrel{\circ}{\Delta_{n, 2}}} \neq \emptyset$

Lemma. $\Pi_{i j}$ consists of the planes $\alpha_{i j, l}^{s_{1}, \ldots, s_{l}}=\Lambda_{i j}+F_{l, s_{1}, \ldots, s_{l}}$ whose directrix $F_{l, s_{1}, \ldots, s_{l}}$ is spanned by the vectors

$$
\begin{gathered}
e_{j s_{k}}=\Lambda_{i j}-\Lambda_{i s_{k}}, 1 \leq k \leq l \\
e_{i s}=\Lambda_{i j}-\Lambda_{j s}, 1 \leq s \leq n, \quad s \neq i, j, \quad s \neq s_{1}, \ldots, s_{l}
\end{gathered}
$$

where $1 \leq I \leq n-3,1 \leq s_{1}<\ldots<s_{l} \leq n$ and $s_{k} \neq i, j, 1 \leq m \leq I$

## Interior admissible polytopes

Proposition. The admissible polytopes of dimension $n-2$ which are not on $\partial \Delta_{n, 2}$ are obtained by intersecting $\Delta_{n, 2}$ with the planes $\Pi_{i j}, 1 \leq i<j \leq n$

- $S_{n} \hookrightarrow\left\{\Pi_{i j}, 1 \leq i<j \leq n\right\}$ with the stabilizer $S_{2} \times S_{n-2}$.
- $S_{2} \times S_{n-2} \hookrightarrow \Pi_{i j}$

Proposition. The irreducible representations for $S_{n-2}$-action on $\Pi_{i j} / S_{2}$ are in dimensions:

$$
\begin{gathered}
\text { for } n \text { odd : }\binom{n-2}{k}, 1 \leq k \leq\left[\frac{n-2}{2}\right] \\
\text { for } n \text { even : }\binom{n-2}{k}, 1 \leq k<\left[\frac{n-2}{2}\right] \text { and } \frac{2}{n-2}\binom{n-2}{\frac{n-2}{2}} .
\end{gathered}
$$

## Interior admissible $(n-2)$ - polytopes

Corollary Those which are not on $\partial \Delta_{n, 2}$ are, up to the $S_{n}$-action, obtained by intersecting $\Delta_{n, 2}$ with the planes $\alpha_{12, l}^{3, \ldots, l+2}, 1 \leq I \leq\left[\frac{n-2}{2}\right]$.
Corollary. An admissible polytope which is not on $\partial \Delta_{n, 2}$ has $n_{k}$ vertices:

$$
n_{k}=k(n-k), \text { where } 2 \leq k \leq\left[\frac{n-2}{2}\right]+1
$$

Moreover, the number of these polytopes which have $n_{k}$ vertices is

$$
\begin{aligned}
& \text { for } n \text { odd : } \quad p_{k}=2 \frac{\binom{n-2}{k-1}}{n_{k}}\binom{n}{2}, \quad 2 \leq k \leq\left[\frac{n-2}{2}\right]+1 \\
& \text { for } n \text { even : } \quad p_{k}=2 \frac{\binom{n-2}{k-1}}{n_{l}}\binom{n}{2}, \quad 1 \leq k<\left[\frac{n-2}{2}\right]+1, \\
& \qquad p_{k}=\frac{8(n-1)}{n(n-2)}\binom{n-2}{\frac{n-2}{2}}, \quad k=\frac{n-2}{2}+1
\end{aligned}
$$

## Examples.

- $G_{4,2}$ - one generating admissible interior polytope of dimension 2 , it has 4 vertices and there 3 interior polytopes.
- $G_{5,2}$ - one generating admissible interior polytope in dimension 3 , it has 6 vertices and the number of interior polytopes is 10 .
- $G_{6,2}-2$ generating admissible interior polytopes (the representation for $S_{2} \times S_{4}$ - action on $\mathbb{C}^{7}$ has 2 irreducible summands of dimension 4 and 3 ), these polytopes have 8 and 9 vertices and their number is 15 and 10 respectively.


## The chamber decomposition for $\Delta_{n, 2}$

Consider the hyperplane arrangement in

$$
\mathbb{R}^{n-1}=\left\{\mathbf{x} \in \mathbb{R}^{n}, x_{1}+\ldots+x_{n}=2\right\}:
$$

$$
\mathcal{A}=\left\{\Pi_{i j}, 1 \leq i<j \leq n\right\} \cup\left\{x_{i}=0,1 \leq i \leq n\right\} \cup\left\{x_{i}=1,1 \leq i \leq n\right\}
$$

$\mathcal{C}\left(\Delta_{n, 2}\right)$ - chamber decompostion for $\Delta_{n, 2}$ defined by $\mathcal{A}$.
Lemma. A chamber $C \in \mathcal{C}\left(\Delta_{n, 2}\right)$ is the intersection of all admissible polytopes which contain $C$

$$
\mathcal{C}=\bigcap_{C \subset P_{\sigma}} P_{\sigma}
$$

$L(\mathcal{A})$ - a face lattice for the arrangement $\mathcal{A}$ and $L\left(\Delta_{n, 2}\right)=L(\mathcal{A}) \cap \Delta_{n, 2}$.
$\mathcal{C}(S)$ - chamber decomposition for $S$ defined by $L\left(\Delta_{n, 2}\right)$ for $S \in L\left(\Delta_{n, 2}\right)$.
Lemma. Any $C \in \mathcal{C}(S)$ can be obtained as the intersection of all admissible polytopes which contain $S$.

## On regular points of the moment map

We proved:

$$
\operatorname{rankd} \mu(L)=\operatorname{dim} P_{\sigma}, \quad P_{\sigma}=\mu\left(\overline{\left.\left(\mathbb{C}^{*}\right)^{n} \cdot L\right)}\right.
$$

- If $\operatorname{dim} P_{\sigma}=n-1$, then $d \mu(L)$ is an epimorphism,
- $M_{x}=\mu^{-1}(x)$ is a smooth submanifold of $G_{n, 2}$ for $x \in \stackrel{\circ}{\Delta}_{n, 2}$ such that $\operatorname{dim} P_{\sigma}=n-1$ for all $P_{\sigma}$ such that $x \in \stackrel{\circ}{P}_{\sigma}$.
- $T^{n-1}$ acts freely on $M_{x}$ and $M_{x} / T^{n-1}$ is a smooth manifold.


## The chamber decomposition for $\Delta_{n, 2}$

Let $C \in \mathcal{C}\left(\Delta_{n, 2}\right)$ : then $C=\bigcap_{C \subset P_{\sigma}} P_{\sigma}, \operatorname{dim} P_{\sigma}=n-1$.

- $M_{C}=\mu^{-1}(C)$ is a submanifold in $G_{n, 2}$ and $T^{n-1}$ acts freely on $M_{C}$
- $M_{C} / T^{n-1}$ is a smooth manifold
- $\hat{\mu}: M_{C} / T^{n-1} \rightarrow C$ is a locally trivial smooth fibration.
- $M_{x} / T^{n-1}, M_{y} / T^{n-1}$ have the same diffeomoprhic type $F_{C}$ for $x, y \in C$.
- $M_{C} / T^{n-1} \cong F_{C} \times C$


## The chamber decomposition for $\Delta_{n, 2}$

On the other hand:

- $M_{C}=\bigcap_{C \subset\left(P_{\sigma}\right.}\left(W_{\sigma} \cap M_{C}\right)$.
- $M_{C} \subset W$ - the main stratum, $W \cap M_{C}$ - a dense set in $M_{C}$
- $W_{\sigma} / T^{\sigma} \cong F_{\sigma} \times \stackrel{\circ}{P}_{\sigma}$ for all $\sigma$ :

Proposition. The manifold $F_{C}$ is a compactification of the space $F$. This compactification consists of the spaces $F_{\sigma}$ such that $C \subset P_{\sigma}$

$$
F_{C}=\bigcup_{C \subseteq P_{\sigma}} F_{\sigma}
$$

## The chamber decomposition for $\Delta_{n, 2}$

Let $S \in L\left(\Delta_{n, 2}\right)$ and consider the chamber decomposition $\mathcal{C}(S)$ of $S$ :

$$
\mathcal{C}(S)=S \backslash\left(S \cap\left(L\left(\Delta_{n, 2}\right) \backslash S\right)\right)
$$

Using the results of Goresky-MacPherson one can prove:
$\hat{\mu}^{-1}(x)$ is homeomorphic to $\hat{\mu}^{-1}(y)$ for any $x, y \in C_{S}, C_{S} \in \mathcal{C}(S)$.
Let $M_{C_{S}}=\mu^{-1}\left(C_{S}\right)$ :
Lemma $\hat{\mu}: M_{C_{S}} / T^{n-1} \rightarrow C_{S}$ is a locally trivial fiber bundle with a fiber an open algebaric manifold $F_{C_{S}}$. Thus, $M_{C_{S}} / T^{n-1} \cong C_{S} \times F_{C_{S}}$.

Lemma. The space $F_{C_{S}}$ is a compactification of $F$. This compactification consists of the spaces $F_{\sigma}$ such that $C_{S} \subset \stackrel{\circ}{P}_{\sigma}$.

## Moment map and $F_{C}, F_{C_{S}}$

$S_{n} \hookrightarrow \mathcal{A}$ and $S_{n} \hookrightarrow \Delta_{n, 2}$ by permuting the coordinates, so
$S_{n}$ permutes the elements of $\mathcal{C}\left(\Delta_{n, 2}\right)$, the elements of $L\left(\Delta_{n, k}\right)$ and the elements of $\mathcal{C}(S)$ for any $S \in L\left(\Delta_{n, k}\right)$.

On other hand $S_{n} \hookrightarrow G_{n, 2}$ by permuting the coordinates and Lemma.
(1) $S_{n}$ action on $G_{n, 2}$ is $T^{n}$-invariant and $\mu \circ S_{n}=S_{n} \circ \mu$.
(2) $S_{n}$ is only such subgroup of $\operatorname{Aut}\left(G_{n, 2}\right)$.

Corollary. $\hat{\mu}^{-1}(\mathfrak{s}(x))$ are all homeomorphic for $\mathfrak{s} \in S^{n}$ and $x \in \Delta_{n, 2}$.
Corollary. $F_{C}, F_{C_{S}}$ is homeomorphic to $\mathfrak{s}\left(F_{C}\right), \mathfrak{s}\left(F_{C_{S}}\right)$ for any

$$
C \in \mathcal{C}\left(\Delta_{n, 2}\right) \text { and any } C_{S} \in \mathcal{C}(S)
$$

## Weighted lattice for $G_{n, 2}$

$$
\mathcal{W} L\left(\Delta_{n, 2}\right)=\bigcup\left(C_{S} \times F_{C_{S}}\right)-\text { weighted face lattice for } \Delta_{n, 2}
$$

$$
S_{n} \hookrightarrow \mathcal{W} L\left(\Delta_{n, 2}\right), \mathfrak{s}\left(C_{S} \times F_{C_{s}}\right)=\mathfrak{s}\left(C_{S}\right) \times \mathfrak{s}\left(F_{C_{s}}\right)
$$

$$
M_{C_{S}}=\mu^{-1}\left(C_{S}\right) / T^{n-1} \cong C_{S} \times F_{C_{S}}
$$

## Remark

- For $G_{4,2}$ it holds $F_{C} \cong F_{C_{S}} \cong \mathbb{C} P^{1}$
- In general they are not all homeomorphic: easy to verify for $G_{5,2}$


## Atlas on $G_{n, 2}$ and $\left(\mathbb{C}^{*}\right)^{n}$-action

$M_{l}$ is equipped with the coordinates: let $I=\{1,2\}$ and $L \in M_{I}$. Then

$$
A_{L}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
z_{11} & z_{12} \\
\vdots & \vdots \\
z_{n-2,1} & z_{n-2,2}
\end{array}\right), t \cdot A_{L}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\frac{t_{3}}{t_{1}} z_{11} & \frac{t_{3}}{t_{2}} z_{12} \\
\vdots & \vdots \\
\frac{t_{n}}{t_{1}} z_{n-2,1} & \frac{t_{n}}{t_{2}} z_{n-2,2}
\end{array}\right)
$$

$u_{I}: M_{I} \rightarrow\left(\mathbb{C}^{*}\right)^{2(n-2)}, \quad u_{I}(L)=\left(z_{11}, z_{12}, \ldots, z_{n-2,1}, \ldots, z_{n-2,2}\right)$
Conisder the representation $r_{n, 2}:\left(\mathbb{C}^{*}\right)^{n} \rightarrow\left(\mathbb{C}^{*}\right)^{2(n-2)}$ given by

$$
\left(t_{1}, \ldots, t_{n}\right) \rightarrow\left(\frac{t_{3}}{t_{1}}, \frac{t_{3}}{t_{2}}, \ldots, \frac{t_{n}}{t_{1}}, \frac{t_{n}}{t_{2}}\right)
$$

The induced action $\left(\mathbb{C}^{*}\right)^{n} \hookrightarrow \mathbb{C}^{2(n-2)}$ is the composition of $r_{n, 2}$ and the standard action of $\left(\mathbb{C}^{*}\right)^{2(n-2)}$ on $\mathbb{C}^{2(n-2)}$

## Atlas on $G_{n, 2}$ and $\left(\mathbb{C}^{*}\right)^{n}$-action

To obtain an effective action of $\left(\mathbb{C}^{*}\right)^{n-1}$ on $\mathbb{C}^{2(n-2)}$ we put

$$
\begin{gathered}
\tau_{i}=\frac{t_{3}}{t_{i}}, i=1,2, \quad \tau_{i+2}=\frac{t_{i+3}}{t_{1}}, 1 \leq i \leq n-3 . \\
\frac{t_{p}}{t_{s}}=\frac{\tau_{p-1} \tau_{s}}{\tau_{1}} \text { for } 3 \leq p \leq n . s=1,2
\end{gathered}
$$

It is obtained the representation of $\left(\mathbb{C}^{*}\right)^{n-1}$ in $\left(\mathbb{C}^{*}\right)^{2(n-2)}$ :

$$
\begin{equation*}
\left(\tau_{1}, \ldots, \tau_{n-1}\right) \rightarrow\left(\tau_{1}, \tau_{2}, \tau_{3}, \frac{\tau_{3} \tau_{2}}{\tau_{1}}, \tau_{4}, \frac{\tau_{4} \tau_{2}}{\tau_{1}}, \ldots, \tau_{n-1}, \frac{\tau_{n-1} \tau_{2}}{\tau_{1}}\right) \tag{1}
\end{equation*}
$$

The induced effective action $\left(\mathbb{C}^{*}\right)^{n-1} \hookrightarrow \mathbb{C}^{2(n-2)}$ is the composition of (1) and the standard action of $\left(\mathbb{C}^{*}\right)^{2(n-2)}$ on $\mathbb{C}^{2(n-2)}$.

## Strata in a chart

The $\left(\mathbb{C}^{*}\right)^{n}$ - orbits in the main stratum $W$ are given by:

$$
\begin{equation*}
c_{i j}^{\prime} z_{i 1} z_{j 2}=c_{i j} z_{j 1} z_{i 2}, \quad 1 \leq i<j \leq n-2, \tag{2}
\end{equation*}
$$

$$
\left(c_{i j}^{\prime}: c_{i j}\right) \in \mathbb{C} P^{1} \text { and } c_{i j}, c_{i j}^{\prime} \neq 0 \text { and } c_{i j} \neq c_{i j}^{\prime}, 2 \leq i<j \leq n-2 .
$$

The parameters $\left(c_{i j}: c_{i j}^{\prime}\right)$ satisfy the relations:

$$
\begin{equation*}
c_{k i}^{\prime} c_{k j} c i j^{\prime}=c_{k i} c_{k j}^{\prime} c_{i j}, \quad 1 \leq k<i<j \leq n-2 . \tag{3}
\end{equation*}
$$

$F=W /\left(\mathbb{C}^{*}\right)^{n}$ - the space of parameters for $W$
$F$ is embedded in $\left(\mathbb{C} P^{1}\right)^{N}$ by (2), (3), where $N=\frac{(n-3)(n-2)}{2}$.
The compactification of $F$ in $\left(\mathbb{C} P^{1}\right)^{N}$ is given by the intersection of the cubic hypersurfaces (3).

## Strata in a chart

Further

$$
\begin{gathered}
\left(c_{i j}: c_{i j}^{\prime}\right)=\left(c_{1 i}^{\prime} c_{1 j}: c_{1 i} c_{1 j}^{\prime}\right), \quad 2 \leq i<j \leq n-2 . \\
\left(c_{1 i}: c_{1 i}^{\prime}\right) \neq\left(c_{1 j}: c_{1 j}^{\prime}\right), \quad 2 \leq i<j \leq n-2 .
\end{gathered}
$$

It follows that

$$
\begin{gathered}
F=\left(\mathbb{C} P_{A}^{1}\right)^{n-3} \backslash \Delta, \\
A=\{(0: 1),(1: 0),(1: 1)\} \text { and } \Delta=\bigcup_{2 \leq i<j \leq n-2} \Delta_{i j}
\end{gathered}
$$

for the diagonals

$$
\begin{gathered}
\Delta_{i j}=\left\{\left(\left(c_{12}: c_{12}^{\prime}\right), \ldots,\left(c_{n-3, n-2}, c_{n-3, n-2}^{\prime}\right)\right) \in\left(\mathbb{C} P_{A}^{1}\right)^{n-3} \mid\right. \\
\left.\left(c_{1 i}: c_{1 i}^{\prime}\right) \neq\left(c_{1 j}: c_{1 j}^{\prime}\right)\right\}
\end{gathered}
$$

## Strata in a chart

$W_{\sigma} \subset M_{12}$ - defined by $P^{1 i_{1}}=0, P^{2 j_{2}}=0$ and $P^{i j}=0$,

$$
3 \leq i_{1}, j_{1}, i, j \leq n, i \neq j .
$$

In the local coordinates: $z_{2 i_{1}}=z_{1 j_{2}}=0$ and $z_{1 i} z_{2 j}=z_{1 j} z_{2 i}$.
Any $W_{\sigma} \subset M_{12}$ is obtained by restricting the surfaces (2) to some $\mathbb{C}^{J}$, where $J \subset\{(1,1), \ldots,(2, n-2)\}$ and $|J|=I$ for some $0 \leq I \leq N$.

Proposition. The manifold $F_{C}$ (a space $F_{C_{S}}$ ) is the compactifications of $F$ given by the spaces $F_{\sigma}, C\left(\right.$ or $\left.C_{S}\right) \subset P_{\sigma}$. Any $F_{\sigma}$ is a point or it is homeomporhic to the space obtained by restricting the hypersurfaces (3) to some $\left(\mathbb{C} P_{B}^{1}\right)^{q} \subset\left(\mathbb{C} P_{A}^{1}\right)^{N}, B=\{(1: 0),(0: 1)\}$ and $0 \leq q \leq I$, $n-1 \leq I \leq N$.

## Strata in a chart

Let $W_{\sigma} \subset M_{12}$ such that $P_{\sigma}$ - interior polytope
Lemma. In the local coordinates $W_{\sigma}$ is given by

$$
\begin{aligned}
& z_{i_{1}, 1}=\ldots=z_{i_{p}, 1}=0, z_{i, 1} \neq 0 \\
& z_{i_{1}, 2}=\ldots=z_{i_{p}, 2} \neq 0, z_{i, 2}=0
\end{aligned}
$$

$i \neq i_{1}, \ldots i_{p}, 3 \leq i_{1}<\ldots i_{p} \leq n, p \geq 1$.
Corollary The space of parameters $F_{\sigma}$ for $W_{\sigma}$ is a point.

## A universal space of parameters $\mathcal{F}$

Find an ambient space in which all compactification $F_{C}$ that is $F_{C_{S}}$ happen.

- $W_{\sigma} \subset M_{12}: z_{2, i_{1}}=z_{1, j_{2}}=0$ and $z_{i 1} z_{2 j}=z_{1 j} z_{2 i}$
- $W$ given by $(3)$ is a dense set in $G_{n, 2}$.

Assign the new space of parameters $\tilde{F}_{\sigma, 12}$ to $W_{\sigma}$ in $M_{12}$.
In which ambient space $\mathcal{F}=\bar{F}$ this assignment is to be done?
Determined by: $\sigma \rightarrow \tilde{F}_{\sigma, i j}$ must not depend on the fixed chart $M_{i j}$.
(1) $\mathcal{F}$ contains the compactification of $F$ in $\left(\mathbb{C} P^{1}\right)^{N}$, which is the intersection of hypersurfaces (3).
(2) The cooordinate change $g_{i j, k l}: M_{i j} \rightarrow M_{k l}$ gives the homeomorphism $f_{i j, k l}: F_{i j} \rightarrow F_{k l}$. It should extend to homeomorphism $\bar{f}_{i j, k l}: \mathcal{F}_{i j} \rightarrow \mathcal{F}_{k l}$.

The homeomorphism $f_{12,13}: F_{12} \rightarrow F_{13}$ is given by

$$
\begin{gathered}
\left(\left(c_{12}: c_{12}^{\prime}\right), \ldots,\left(c_{n-3, n-2}: c_{n-3, n-2}^{\prime}\right)\right) \rightarrow \\
\left(\left(c_{12}: c_{12}-c_{12}^{\prime}\right), \ldots,\left(c_{1 n-2}: c_{1 n-2}-c_{1 n-2}^{\prime}\right),\right. \\
\left(c_{13}^{\prime} c_{23}\left(c_{12}-c_{12}^{\prime}\right): c_{12}^{\prime} c_{23}^{\prime}\left(c_{13}-c_{13}^{\prime}\right)\right), \ldots,\left(c_{1 j}^{\prime} c_{i j}\left(c_{1 i}-c_{1 i}^{\prime}\right): c_{1 i}^{\prime} c_{i j}^{\prime}\left(c_{1 j}-c_{1 j}^{\prime}\right)\right), \\
\ldots,\left(c_{1 n-2}^{\prime} c_{n-3, n-2}^{\prime}\left(c_{1 n-3}^{\prime}-c_{1 n-3}^{\prime}\right): c_{1 n-3}^{\prime} c_{n-3, n-2}^{\prime}\left(c_{1 n-2}-c_{1 n-2}^{\prime}\right)\right) .
\end{gathered}
$$

- $f_{12,13}$ can not be continuously extended to the submanifolds in $\bar{F}_{12}$ given by $\partial F_{12, i j}=\left\{c_{1 i}=c_{1 i}^{\prime}, c_{1 j}=c_{1 j}^{\prime}, 2 \leq i<j \leq n-2\right\}$.
- $\bar{F} \subset\left(\mathbb{C} P^{1}\right)^{N}$ is not an appropriate compactification of $F$.

One needs to blow up $\bar{F}_{12}$ along the surfaces $\partial F_{12, i j}, 2 \leq i<j \leq n-2$.

## Definition

A space $\mathcal{F}$ obtained by the blow ups of $F_{12}$ along the surfaces $\partial F_{12, i j}$, $2 \leq i<j \leq n-2$ is called a universal space of parameters.

- For $n=5$ there is just $\partial F_{12,23}=((1: 1),(1: 1),(1: 1))$ and $\mathcal{F}$ is the blow up of $\bar{F}=,\left\{\left(\left(c_{12}: c_{12}^{\prime}\right),\left(c_{13}: c_{13}^{\prime}\right),\left(c_{23}: c_{23}^{\prime}\right)\right) \in\right.$ $\left.\left(\mathbb{C} P^{1}\right)^{3} \mid c_{12}^{\prime} c_{13} c_{23}^{\prime}=c_{12} c_{13}^{\prime} c_{23}\right\}$ at the point $((1: 1),(1: 1),(1: 1))$.
- For $n \geq 6$ the spaces $\partial F_{12, i j}$ are not point and they intersect. The blow ups do now commute in general and the question of uniqueness arises.
- The compactification of $F=\left(\mathbb{C} P_{A}^{1}\right)^{n-3} \backslash \Delta$ provided by $S$. Keel is exactly done by an iterated blow ups. It gives a smooth, compact algebraic variety and it coincides with Chow quotient of $G_{n, 2}$ by Kapranov and with Grotendick-Knudsen compactification $\overline{M_{0, n}}$ of the moduli space of smooth pointed curves of genus zero.


## Virtual spaces of parameters

Proposition. For any chart $M_{i j}$ and any stratum $W_{\sigma}$ there is a subspace $\tilde{F}_{\sigma, i j} \subset \mathcal{F}_{i j}$ whose homeomorphic type $\tilde{F}_{\sigma, i j}$ depends on the stratum $W_{\sigma}$ but it does not depend on the chart $M_{i j}$.
Definition The homeomorphic type $\tilde{F}_{\sigma}$ of the space $\tilde{F}_{\sigma, i j}$ is called the virtual space of parameters for the stratum $W_{\sigma}$.

Definition The virtual space of parameters $\tilde{F}_{C_{S}}$ for a chamber $C_{S}$ is defined by

$$
\begin{equation*}
\tilde{F}_{C_{S}}=\bigcup_{C_{S} \subset \stackrel{\circ}{P}_{\sigma}} \tilde{F}_{\sigma} \subset \mathcal{F} \tag{4}
\end{equation*}
$$

$\tilde{F}_{C_{S}}$ is a formal disjoint union, so it is defined the function $m: \tilde{F}_{C_{S}} \rightarrow \Sigma$ by $m(y)=\sigma$ if and only if $y \in \tilde{F}_{\sigma}$.

## lustration

Let $W_{\sigma} \subset M_{12}$, given by

$$
\begin{gathered}
\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
z_{31} & z_{32} \\
z_{41} & z_{42} \\
z_{51} & 0 \\
\vdots & \vdots \\
z_{n-2,1} & 0
\end{array}\right) \quad z_{i j} \neq 0 \text { and } z_{31} z_{42}=z_{41} z_{32} \\
\tilde{F}_{\sigma, 12}=\left(\left(c_{i j}: c_{i j}^{\prime}\right)\right) \in \mathbb{C} P^{N}, N=\binom{n-2}{2}, \\
\left(c_{1 i}: c_{1 i}^{\prime}\right)=(1: 0), i=2,3,4, \quad\left(c_{2 i}: c_{2 i}^{\prime}\right)=(0: 1), i \geq 3 \\
\left(c_{34}: c_{34}^{\prime}\right)=(1: 1), \quad\left(c_{3 i}: c_{3 i}^{\prime}\right)=\left(c_{4 i}: c_{4 i}^{\prime}\right)=(1: 0), i \geq 5 \\
\left(c_{1 i}: c_{1 i}^{\prime}\right) \in \mathbb{C} P^{1}, i \geq 5, \quad\left(c_{k l}: c_{k l}^{\prime}\right) \in \mathbb{C} P^{1}, k \geq 5
\end{gathered}
$$

## lustration

$W_{\sigma} \subset M_{13}$ is given by

$$
\begin{gathered}
\left.\left(\begin{array}{cc}
1 & 0 \\
w_{21} & w_{22} \\
0 & 1 \\
0 & w_{42} \\
w_{51} & 0 \\
\vdots & \vdots \\
w_{n-2,1} & 0
\end{array}\right) \quad w_{i j} \neq 0 \quad \text { (note }: F_{\sigma}-\text { point }\right) \\
\tilde{F}_{\sigma, 13}=\left(\left(d_{i j}: d_{i j}^{\prime}\right)\right) \in \mathbb{C} P^{N}, N=\binom{n-2}{2}, \\
\left(d_{1 i}: d_{1 i}^{\prime}\right)=(1: 0), i=2,3,4, \quad\left(d_{1 i}: d_{1 i}^{\prime}\right) \in \mathbb{C} P^{1}, i \geq 5 \\
\left(d_{2 i}: d_{2 i}^{\prime}\right)=(1: 0), i=3,4,\left(d_{2 i}: d_{2 i}^{\prime}\right)=\left(d_{4 i}: d_{4 i}^{\prime}\right)=(0: 1), i \geq 5 \\
\left(d_{34}: d_{34}^{\prime}\right) \in \mathbb{C} P^{1},\left(d_{3 i}: d_{3 i}^{\prime}\right)=(1: 0), i \geq 5,\left(d_{k l}: d_{k l}^{\prime}\right) \in \mathbb{C} P^{1}, k \geq 5
\end{gathered}
$$

## Virtual and real spaces of parameters

There are two spaces of parameters for a stratum $W_{\sigma}$ in a chart $M_{i j}$ :

- $F_{\sigma, i j}$ such that $W_{\sigma, i j} / T^{\sigma} \cong \stackrel{\circ}{P}_{\sigma} \times F_{\sigma, i j}$,
- $\tilde{F}_{\sigma, i j}$ - the virtual space of parameters defined by

$$
W_{\sigma, i j} / T^{\sigma} \subset \partial\left(W_{i j} / T^{n-1}\right) \subset P^{k} \times \mathcal{F}_{i j}
$$

The spaces $F_{\sigma, i j}$ and $\tilde{F}_{\sigma, i j}$ do not coincide in generel (even for $G_{4,2}$ ). We prove:

## Theorem

There exists the canonical projection $p_{\sigma, i j}: \tilde{F}_{\sigma, i j} \rightarrow F_{\sigma, i j}$ for any $\sigma$.

## Corollary

There exists the canonical projection $p_{C_{S, i j}}: \tilde{F}_{C_{S}, i j} \rightarrow F_{C_{S}, i j}$ defined by $p_{C_{S, i j}}(y)=p_{m(y), i j}(y)$. where $y \in \tilde{F}_{\sigma, i j}$.

## The orbit space $G_{n, 2} / T^{n}$

Let us consider the weighted lattice

$$
\begin{equation*}
\mathfrak{C}=\mathcal{W} L\left(\Delta_{n, 2}\right)=\bigcup_{C_{S}}\left(C_{S} \times \tilde{F}_{C}\right) \tag{5}
\end{equation*}
$$

There is a canonical embedding

$$
h: \mathfrak{C} \rightarrow \Delta_{n, 2} \times \mathcal{F}, \quad h\left(x, f_{C_{S}}\right)=\left(x, i_{C_{s}}\left(f_{C_{S}}\right)\right),
$$

$i_{C_{S}}: \tilde{F}_{C_{S}} \rightarrow \mathcal{F}$ is given by the inclusion $\tilde{F}_{\sigma, i j} \rightarrow \mathcal{F}_{i j}$ in a fixed chart $M_{i j}$.
The map $h$ defines the topology on $\mathfrak{C}$ :
$U \subset \mathfrak{C}$ is an open set if and only if $h(U)$ is an open set in $\Delta_{n, 2} \times \mathcal{F}$.

On the other hand there is a homeomoprhism:

$$
h_{C_{S, i j}}: C_{S} \times F_{C_{S}, i j} \rightarrow M_{C_{S}} / T^{n-1}
$$

## The orbit space $G_{n, 2} / T^{n}$

For any fixed chart $M_{i j}$ we define the map

$$
G_{i j}: \mathfrak{C}_{i j} \rightarrow G_{n, 2} / T^{n}, \quad G_{i j}(x, y)=h_{C_{S}, i j}\left(x, p_{C_{S}, i j}(y)\right),
$$

for $(x, y) \in C_{S} \times \tilde{F}_{C_{S}, i j}$
Theorem
The map $G_{i j}$ is a continuous surjection and the orbit space $G_{n, 2} / T^{n}$ is homeomorphic to the quotient of the space $\mathfrak{E}$ by the map $G_{i j}$.

