Some new insights into T^n -action on the Grassmannians $G_{n,2}$

Svjetlana Terzić

University of Montenegro

Toric topology 2019, Okayama, November 18, 2019.

Complex Grassmann manifolds $G_{n,2} = G_{n,2}(\mathbb{C})$

 \mathbb{C}^n — *n*-dimensional complex vector space with fixed basis. $G_{n,2}$ – 2-dimensional complex subspaces in \mathbb{C}^n , $G_{n,2} = U(n)/U(2) \times U(n-2)$

The coordinate-wise \mathbb{T}^n - action on \mathbb{C}^n induces \mathbb{T}^n - action on $G_{n,2}$. This action is not effective — $T^{n-1} = \mathbb{T}^n / \Delta$ acts effectively. dim $G_{n,2} = 4(n-2), d = 2(n-2) - (n-1) = n-3$ - complexity of

 T^{n-1} -action;

 $d \ge 2$ for $n \ge 5$.

 \mathbb{T}^n -action extends to coordinate-wise $(\mathbb{C}^*)^n$ -action on $G_{n,2}$

Plücker embedding

The Plücker embedding $G_{n,2} \to \mathbb{C}P^{N-1}$, $N = \binom{n}{2}$, is given by

$$L \rightarrow P(L) = (P_I(A_L), I \subset \{1, \ldots n\}, |I| = 2),$$

 $P_I(A_L)$ - Plücker coordinates of L in a fixed basis. Consider the representation

$$\rho_{n,2}: \mathbb{T}^n \to \mathbb{T}^N, \quad N = \binom{n}{2},$$

given by the second exterior power

$$(t_1,\ldots,t_n) \rightarrow (t_1t_2,\ldots,t_{n-1}t_n).$$

 $\rho_{n,2}$ defines the action \mathbb{T}^n on $\mathbb{C}P^{N-1}$.

The Plücker embedding is equivariant for the representation $\rho_{n,2}$:

$$\mathbb{T}^n \curvearrowright G_{n,2} \rightarrow \mathbb{C}P^{N-1} \backsim \mathbb{T}^n$$

Toric topology 2019, Okayama, November 1

Moment map

The weight vectors of the representation $\rho_{n,2}$ are:

$$\Lambda_I \in \mathbb{R}^n$$
, $(\Lambda_I)_j = 1$ for $j \in I$, $(\Lambda_I)_j = 0$ for $j \notin I$,

where $I \subset \{1, ..., n\}$, |I| = 2 and \mathbb{R}^n is with a fixed basis. Λ_I has 1 at 2 places and it has 0 at the other (n-2) places.

The moment map $\mu: G_{n,2} \to \mathbb{R}^n$ is defined by

$$\mu(L) = \frac{1}{|P(L)|^2} \sum |P_I(A_L)|^2 \Lambda_I, \quad |P(L)|^2 = \sum |P_I(A_L)|^2,$$

where the sum goes over the subsets $I \subset \{1, \ldots, n\}$, |I| = 2.

- μ is \mathbb{T}^n -invariant
- $Im\mu = convexhull(\Lambda_I) = \Delta_{n,2} hypersimplex.$
- $\Delta_{n,k}$ is in the hyperplane $x_1 + \cdots + x_n = 2$ in \mathbb{R}^n , dim $\Delta_{n,2} = n 1$.

Strata on $G_{n,2}$

Let $M_{ij} = \{ L \in G_{n,2} \mid P_{ij}(L) \neq 0 \}$, $i, j \in \{1, \dots, n\}, i < j$.

- M_{ij} is an open and dense set in $G_{n,2}$ and $G_{n,2} = \bigcup M_{ij}$.
- *M_{ij}* contains exactly one fixed point *x_{ij}*
- Set $Y_{ij} = G_{n,2} \setminus M_{ij}$.

Let $\sigma \subset \{\{i,j\}, i,j \in \{1,\ldots,n\}, i \neq j\}$ and define the stratum W_σ by

$$W_{\sigma} = (\cap_{\{i,j\} \in \sigma} M_{ij}) \cap (\cap_{\{i,j\} \notin \sigma} Y_{ij})$$
 if this intersection is nonempty.

The main stratum is $W = \bigcap_{\{i,j\} \in \{\binom{n}{2}\}} M_I$ - an open and dense set in $G_{n,2}$.

•
$$W_{\sigma} \cap W_{\sigma'} = \emptyset$$
 for $\sigma \neq \sigma'$,

•
$$W_\sigma$$
 is \mathbb{T}^n - invariant, $\mathit{G}_{n,2} = \cup_\sigma W_\sigma$

Strata on $G_{n,2}$

Lemma

$$\mu(W_{\sigma}) \stackrel{\circ}{=} \stackrel{\circ}{P}_{\sigma}, \ P_{\sigma} = \operatorname{convhull}(\Lambda_{ij}, \{i, j\} \in \sigma)$$

 P_{σ} – an admissible polytope

 $\{W_{\sigma}\}$ coincide with the strata as defined by Gel'fand-Serganova:

$$W_{\sigma} = \{L \in G_{n,2} : \mu(\overline{\mathbb{C}^* \cdot L}) = P_{\sigma}\}$$

Toric topology 2019, Okayama, November 18 / 35

Theorem

All points from W_{σ} have the same stabilizer T_{σ} .

Torus $T^{\sigma} = T^n/T_{\sigma}$ acts freely on W_{σ} .

Moment map decomposes as $\mu: W_{\sigma} \to W_{\sigma}/T^{\sigma} \stackrel{\hat{\mu}}{\to} \stackrel{\circ}{P}_{\sigma}$.

Theorem

 $\hat{\mu}: W_{\sigma}/T^{\sigma} \rightarrow \stackrel{\circ}{P}_{\sigma}$ is a locally trivial fiber bundle with a fiber an open algebraic manifold F_{σ} . Thus,

$$W_{\sigma}/T^{\sigma}\cong \overset{\circ}{P}_{\sigma}\times F_{\sigma}.$$

 F_{σ} – the space of parameter for W_{σ} ;

Admissible polytopes for $G_{n,2}$

• dim $\Delta_{n,2} = n - 1$

•
$$\partial \Delta_{n,2} = (\cup_n \Delta^{n-2}) \cup (\cup_n \Delta_{n-1,2})$$

• Admissible polytope: $P_{\sigma} = \mu(\overline{\mathbb{C}^n \cdot L})$ for $L \in \mathcal{G}_{n,2}$

Proposition

If dim
$$P_{\sigma} \leq n-3$$
 then $P_{\sigma} \subset \partial \Delta_{n,2}$.

Admissible polytypes in dimension n-2

Let dim
$$P_{\sigma} = n - 2$$
 and $P_{\sigma} \subset \partial \Delta_{n,2}$:

- $P_{\sigma} = \Delta^{n-2}$ or
- $P_{\sigma} \subseteq \Delta_{n-1,2}$ is an admissible polytope for $G_{n-1,2}$.

Let $\mu_j = pr_j \circ \mu$ and $pr_j : \mathbb{R}^n \to \mathbb{R}^1_i$ – projection.

Lemma. If $P_{\sigma} \subset \partial \Delta_{n,2}$ then $\mu_j(P_{\sigma}) = 0$ or $\mu_j(P_{\sigma}) = 1$ for some $1 \leq j \leq n$.

Interior admissible (n-2)- polytopes

Let $P_{\sigma} \cap \stackrel{\circ}{\Delta}_{n,2} \neq \emptyset$ - interior admissible polytope

 Π_{ij} the set of planes of dimension n-2 such that

- the vertex $\Lambda_{ij} \in \alpha_{ij}$ for any $\alpha_{ij} \in \Pi_{ij}$,
- α_{ij} is paralel to n − 2 edges of Δ_{n,2} which are incident to Λ_{ij}
 α_{ij} ∩ Δ_{n,2} ≠ Ø

Lemma. Π_{ij} consists of the planes $\alpha_{ij,l}^{s_1,...,s_l} = \Lambda_{ij} + F_{l,s_1,...,s_l}$ whose directrix $F_{l,s_1,...,s_l}$ is spanned by the vectors

$$e_{js_k} = \Lambda_{ij} - \Lambda_{is_k}, \ 1 \le k \le l,$$

 $e_{is} = \Lambda_{ij} - \Lambda_{js}, \ 1 \leq s \leq n, \ s \neq i, j, \ s \neq s_1, \dots, s_l,$

where $1 \le l \le n-3$, $1 \le s_1 < \ldots < s_l \le n$ and $s_k \ne i, j, 1 \le m \le l$

Interior admissible polytopes

Proposition. The admissible polytopes of dimension n-2 which are not on $\partial \Delta_{n,2}$ are obtained by intersecting $\Delta_{n,2}$ with the planes \prod_{ij} , $1 \le i < j \le n$

•
$$S_n \hookrightarrow \{ \prod_{ij}, 1 \le i < j \le n \}$$
 with the stabilizer $S_2 \times S_{n-2}$.
• $S_2 \times S_{n-2} \hookrightarrow \prod_{ij}$

Proposition. The irreducible representations for S_{n-2} -action on \prod_{ij}/S_2 are in dimensions:

for
$$n \text{ odd}$$
: $\binom{n-2}{k}$, $1 \le k \le \left[\frac{n-2}{2}\right]$,
for $n \text{ even}$: $\binom{n-2}{k}$, $1 \le k < \left[\frac{n-2}{2}\right]$ and $\frac{2}{n-2}\binom{n-2}{\frac{n-2}{2}}$.

Interior admissible (n-2)- polytopes

Corollary Those which are not on $\partial \Delta_{n,2}$ are, up to the S_n -action, obtained by intersecting $\Delta_{n,2}$ with the planes $\alpha_{12,l}^{3,...,l+2}$, $1 \leq l \leq [\frac{n-2}{2}]$.

Corollary. An admissible polytope which is not on $\partial \Delta_{n,2}$ has n_k vertices:

$$n_k = k(n-k)$$
, where $2 \le k \le [\frac{n-2}{2}] + 1$.

Moreover, the number of these polytopes which have n_k vertices is

for *n* odd :
$$p_k = 2 \frac{\binom{n-2}{k-1}}{n_k} \binom{n}{2}, \ 2 \le k \le [\frac{n-2}{2}] + 1$$

for *n* even:
$$p_k = 2 \frac{\binom{n-2}{k-1}}{n_l} \binom{n}{2}, \ 1 \le k < [\frac{n-2}{2}] + 1,$$

 $p_k = \frac{8(n-1)}{n(n-2)} \binom{n-2}{\frac{n-2}{2}}, \ k = \frac{n-2}{2} + 1.$

Svjetlana Terzić (University of Montenegro) Some new insights into Tⁿ-action on the Gra

Examples.

- $G_{4,2}$ one generating admissible interior polytope of dimension 2, it has 4 vertices and there 3 interior polytopes.
- $G_{5,2}$ one generating admissible interior polytope in dimension 3, it has 6 vertices and the number of interior polytopes is 10.
- $G_{6,2} 2$ generating admissible interior polytopes (the representation for $S_2 \times S_4$ action on \mathbb{C}^7 has 2 irreducible summands of dimension 4 and 3), these polytopes have 8 and 9 vertices and their number is 15 and 10 respectively.

Consider the hyperplane arrangement in $\mathbb{R}^{n-1} = \{ \mathbf{x} \in \mathbb{R}^n, x_1 + \ldots + x_n = 2 \}:$ $\mathcal{A} = \{ \prod_{ii}, 1 \le i < j \le n \} \cup \{ x_i = 0, 1 \le i \le n \} \cup \{ x_i = 1, 1 \le i \le n \}$ $\mathcal{C}(\Delta_{n,2})$ – chamber decomposition for $\Delta_{n,2}$ defined by \mathcal{A} . Lemma. A chamber $C \in C(\Delta_{n,2})$ is the intersection of all admissible

polytopes which contain C

$$\mathcal{C} = \bigcap_{C \subset P_{\sigma}} P_{\sigma}$$

 $L(\mathcal{A})$ – a face lattice for the arrangement \mathcal{A} and $L(\Delta_{n,2}) = L(\mathcal{A}) \cap \Delta_{n,2}$. $\mathcal{C}(S)$ – chamber decomposition for S defined by $L(\Delta_{n,2})$ for $S \in L(\Delta_{n,2})$. Lemma. Any $C \in \mathcal{C}(S)$ can be obtained as the intersection of all admissible polytopes which contain S. Toric topology 2019, Okayama, November 15 On regular points of the moment map

We proved:

$$\operatorname{rank} d\mu(L) = \operatorname{dim} P_{\sigma}, \ P_{\sigma} = \mu(\overline{(\mathbb{C}^*)^n \cdot L}).$$

• If dim $P_{\sigma} = n - 1$, then $d\mu(L)$ is an epimorphism,

- $M_x = \mu^{-1}(x)$ is a smooth submanifold of $G_{n,2}$ for $x \in \stackrel{\circ}{\Delta}_{n,2}$ such that $\dim P_{\sigma} = n 1$ for all P_{σ} such that $x \in \stackrel{\circ}{P}_{\sigma}$.
- T^{n-1} acts freely on M_x and M_x/T^{n-1} is a smooth manifold.

Let
$$C \in \mathcal{C}(\Delta_{n,2})$$
: then $C = \bigcap_{C \subset P_{\sigma}} P_{\sigma}$, dim $P_{\sigma} = n - 1$.

- M_C = μ⁻¹(C) is a submanifold in G_{n,2} and Tⁿ⁻¹ acts freely on M_C
 M_C/Tⁿ⁻¹ is a smooth manifold
- $\hat{\mu}: M_C/T^{n-1} \to C$ is a locally trivial smooth fibration.
- $M_x/T^{n-1}, M_y/T^{n-1}$ have the same diffeomoprhic type F_C for $x, y \in C$.
- $M_C/T^{n-1} \cong F_C \times C$

On the other hand:

•
$$M_C = \bigcap_{C \subset (P_\sigma)} (W_\sigma \cap M_C).$$

• $M_C \subset W$ – the main stratum, $W \cap M_C$ - a dense set in M_C

•
$$W_{\sigma}/T^{\sigma} \cong F_{\sigma} \times \overset{\circ}{P}_{\sigma}$$
 for all σ :

Proposition. The manifold F_C is a compactification of the space F. This compactification consists of the spaces F_σ such that $C \subset P_\sigma$

$$F_C = \bigcup_{C \subseteq P_\sigma} F_\sigma.$$

Toric topology 2019, Okayama, November 18 / 35

Let $S \in L(\Delta_{n,2})$ and consider the chamber decomposition C(S) of S:

$$\mathcal{C}(S) = S \setminus (S \cap (L(\Delta_{n,2}) \setminus S)).$$

Using the results of Goresky-MacPherson one can prove:

 $\hat{\mu}^{-1}(x)$ is homeomorphic to $\hat{\mu}^{-1}(y)$ for any $x, y \in C_S$, $C_S \in \mathcal{C}(S)$.

Let
$$M_{C_S} = \mu^{-1}(C_S)$$
:

Lemma $\hat{\mu}: M_{C_S}/T^{n-1} \to C_S$ is a locally trivial fiber bundle with a fiber an open algebraic manifold F_{C_S} . Thus, $M_{C_S}/T^{n-1} \cong C_S \times F_{C_S}$.

Lemma. The space F_{C_S} is a compactification of F. This compactification consists of the spaces F_{σ} such that $C_S \subset \stackrel{\circ}{P}_{\sigma}$.

Moment map and F_C , F_{C_S}

 $S_n \hookrightarrow \mathcal{A}$ and $S_n \hookrightarrow \Delta_{n,2}$ by permuting the coordinates, so

 S_n permutes the elements of $\mathcal{C}(\Delta_{n,2})$, the elements of $L(\Delta_{n,k})$ and the elements of $\mathcal{C}(S)$ for any $S \in L(\Delta_{n,k})$.

On other hand $S_n \hookrightarrow G_{n,2}$ by permuting the coordinates and

Lemma.

- S_n action on $G_{n,2}$ is T^n -invariant and $\mu \circ S_n = S_n \circ \mu$.
- **2** S_n is only such subgroup of Aut $(G_{n,2})$.

Corollary. $\hat{\mu}^{-1}(\mathfrak{s}(x))$ are all homeomorphic for $\mathfrak{s} \in S^n$ and $x \in \Delta_{n,2}$.

Corollary.
$$F_C$$
, F_{C_S} is homeomorphic to $\mathfrak{s}(F_C)$, $\mathfrak{s}(F_{C_S})$ for any $C \in \mathcal{C}(\Delta_{n,2})$ and any $C_S \in \mathcal{C}(S)$.

Weighted lattice for $G_{n,2}$

$$\mathcal{WL}(\Delta_{n,2}) = \bigcup_{S \in L(\Delta_{n,k})} (C_S \times F_{C_S}) - \text{weighted face lattice for} \Delta_{n,2}$$

$$S_n \hookrightarrow \mathcal{W}L(\Delta_{n,2}), \ \mathfrak{s}(C_S \times F_{C_S}) = \mathfrak{s}(C_S) \times \mathfrak{s}(F_{C_S})$$

$$M_{C_S} = \mu^{-1}(C_S)/T^{n-1} \cong C_S \times F_{C_S}$$

Remark

- For $G_{4,2}$ it holds $F_C \cong F_{C_S} \cong \mathbb{C}P^1$
- In general they are not all homeomorphic: easy to verify for $G_{5,2}$

Atlas on $G_{n,2}$ and $(\mathbb{C}^*)^n$ -action

 M_I is equipped with the coordinates: let $I = \{1, 2\}$ and $L \in M_I$. Then

$$A_{L} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ z_{11} & z_{12} \\ \vdots & \vdots \\ z_{n-2,1} & z_{n-2,2} \end{pmatrix}, \quad t \cdot A_{L} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{t_{3}}{t_{1}} z_{11} & \frac{t_{3}}{t_{2}} z_{12} \\ \vdots & \vdots \\ \frac{t_{n}}{t_{1}} z_{n-2,1} & \frac{t_{n}}{t_{2}} z_{n-2,2} \end{pmatrix}$$

 $u_{I}: M_{I} \to (\mathbb{C}^{*})^{2(n-2)}, \ u_{I}(L) = (z_{11}, z_{12}, \dots, z_{n-2,1}, \dots, z_{n-2,2})$ Conisder the representation $r_{n,2}: (\mathbb{C}^{*})^{n} \to (\mathbb{C}^{*})^{2(n-2)}$ given by

$$(t_1,\ldots,t_n) \rightarrow (\frac{t_3}{t_1},\frac{t_3}{t_2},\ldots,\frac{t_n}{t_1},\frac{t_n}{t_2}).$$

The induced action $(\mathbb{C}^*)^n \hookrightarrow \mathbb{C}^{2(n-2)}$ is the composition of $r_{n,2}$ and the standard action of $(\mathbb{C}^*)^{2(n-2)}$ on $\mathbb{C}^{2(n-2)}$

Atlas on $G_{n,2}$ and $(\mathbb{C}^*)^n$ -action

To obtain an effective action of $(\mathbb{C}^*)^{n-1}$ on $\mathbb{C}^{2(n-2)}$ we put

$$au_i = \frac{t_3}{t_i}, \ i = 1, 2, \quad au_{i+2} = \frac{t_{i+3}}{t_1}, \ 1 \le i \le n-3.$$

$$\frac{t_p}{t_s} = \frac{\tau_{p-1}\tau_s}{\tau_1} \text{ for } 3 \le p \le n. \ s = 1, 2.$$

It is obtained the representation of $(\mathbb{C}^*)^{n-1}$ in $(\mathbb{C}^*)^{2(n-2)}$:

$$(\tau_1, \ldots, \tau_{n-1}) \to (\tau_1, \tau_2, \tau_3, \frac{\tau_3 \tau_2}{\tau_1}, \tau_4, \frac{\tau_4 \tau_2}{\tau_1}, \ldots, \tau_{n-1}, \frac{\tau_{n-1} \tau_2}{\tau_1}).$$
 (1)

The induced effective action $(\mathbb{C}^*)^{n-1} \hookrightarrow \mathbb{C}^{2(n-2)}$ is the composition of (1) and the standard action of $(\mathbb{C}^*)^{2(n-2)}$ on $\mathbb{C}^{2(n-2)}$.

The $(\mathbb{C}^*)^n$ - orbits in the main stratum W are given by:

$$c'_{ij}z_{i1}z_{j2} = c_{ij}z_{j1}z_{i2}, \ 1 \le i < j \le n-2,$$
 (2)

 $(c_{ij}^{'}:c_{ij}) \in \mathbb{C}P^{1} ext{ and } c_{ij}, c_{ij}^{'}
eq 0 ext{ and } c_{ij}
eq c_{ij}^{'}, 2 \leq i < j \leq n-2.$

The parameters $(c_{ij} : c'_{ij})$ satisfy the relations:

$$c_{ki}^{'}c_{kj}c_{ij}^{'} = c_{ki}c_{kj}^{'}c_{ij}, \ 1 \le k < i < j \le n-2.$$
 (3)

 $F = W/(\mathbb{C}^*)^n$ - the space of parameters for W

F is embedded in $(\mathbb{C}P^1)^N$ by (2), (3), where $N = \frac{(n-3)(n-2)}{2}$.

The compactification of F in $(\mathbb{C}P^1)^N$ is given by the intersection of the cubic hypersurfaces (3).

Further

$$(c_{ij}:c_{ij}^{'}) = (c_{1i}^{'}c_{1j}:c_{1i}c_{1j}^{'}), \ 2 \le i < j \le n-2.$$

 $(c_{1i}:c_{1i}^{'}) \ne (c_{1j}:c_{1j}^{'}), \ 2 \le i < j \le n-2.$

It follows that

$$egin{aligned} \mathcal{F} &= (\mathbb{C}\mathcal{P}^1_A)^{n-3}\setminus\Delta, \ \mathcal{A} &= \{(0:1), (1:0), (1:1)\} ext{ and } \Delta &= igcup_{2\leq i < j \leq n-2} \Delta_{ij} \end{aligned}$$

for the diagonals

$$egin{aligned} \Delta_{ij} &= \{((c_{12}:c_{12}^{'}),\ldots,(c_{n-3,n-2},c_{n-3,n-2}^{'})) \in (\mathbb{C}P_{A}^{1})^{n-3} | \ & (c_{1i}:c_{1i}^{'})
eq (c_{1j}:c_{1j}^{'}) \}. \end{aligned}$$

$$W_{\sigma} \subset M_{12}$$
 - defined by $P^{1i_1} = 0, P^{2j_2} = 0$ and $P^{ij} = 0, 3 \leq i_1, j_1, i, j \leq n$, $i \neq j$.

In the local coordinates: $z_{2i_1} = z_{1j_2} = 0$ and $z_{1i}z_{2j} = z_{1j}z_{2i}$.

Any $W_{\sigma} \subset M_{12}$ is obtained by restricting the surfaces (2) to some \mathbb{C}^{J} , where $J \subset \{(1,1), \ldots, (2,n-2)\}$ and |J| = I for some $0 \leq I \leq N$.

Proposition. The manifold F_C (a space F_{C_S}) is the compactifications of F given by the spaces F_{σ} , $C(\text{or } C_S) \subset P_{\sigma}$. Any F_{σ} is a point or it is homeomporhic to the space obtained by restricting the hypersurfaces (3) to some $(\mathbb{C}P_B^1)^q \subset (\mathbb{C}P_A^1)^N$, $B = \{(1:0), (0:1)\}$ and $0 \le q \le I$, $n-1 \le I \le N$.

i

Let $W_{\sigma} \subset M_{12}$ such that P_{σ} - interior polytope Lemma. In the local coordinates W_{σ} is given by

$$z_{i_1,1} = \ldots = z_{i_p,1} = 0, \ z_{i,1} \neq 0,$$

 $z_{i_1,2} = \ldots = z_{i_p,2} \neq 0, \ z_{i,2} = 0$
 $\neq i_1, \ldots i_p, \ 3 \le i_1 < \ldots i_p \le n, \ p \ge 1.$

Corollary The space of parameters F_{σ} for W_{σ} is a point.

A universal space of parameters ${\cal F}$

Find an ambient space in which all compactification F_C that is F_{C_S} happen.

•
$$W_{\sigma} \subset M_{12}$$
: $z_{2,i_1} = z_{1,j_2} = 0$ and $z_{i1}z_{2j} = z_{1j}z_{2i}$

• W given by (3) is a dense set in $G_{n,2}$.

Assign the new space of parameters $\tilde{F}_{\sigma,12}$ to W_{σ} in M_{12} .

In which ambient space $\mathcal{F} = \overline{F}$ this assignment is to be done?

Determined by: $\sigma \rightarrow \tilde{F}_{\sigma,ij}$ must not depend on the fixed chart M_{ij} .

- \mathcal{F} contains the compactification of F in $(\mathbb{C}P^1)^N$, which is the intersection of hypersurfaces (3).
- **2** The cooordinate change $g_{ij,kl}: M_{ij} \to M_{kl}$ gives the homeomorphism $f_{ij,kl}: F_{ij} \to F_{kl}$. It should extend to homeomorphism $\bar{f}_{ij,kl}: \mathcal{F}_{ij} \to \mathcal{F}_{kl}$.

The homeomorphism $f_{12,13}: F_{12} \rightarrow F_{13}$ is given by

$$((c_{12}:c_{12}'),\ldots,(c_{n-3,n-2}:c_{n-3,n-2}')) \rightarrow ((c_{12}:c_{12}-c_{12}'),\ldots,(c_{1n-2}:c_{1n-2}-c_{1n-2}'), (c_{13}c_{23}(c_{12}-c_{12}'):c_{12}'c_{23}'(c_{13}-c_{13}')),\ldots,(c_{1j}'c_{ij}(c_{1i}-c_{1i}'):c_{1i}'c_{ij}'(c_{1j}-c_{1j}')), \ldots,(c_{1n-3}'c_{n-3,n-2}'(c_{1n-3}-c_{1n-3}'):c_{1n-3}'c_{n-3,n-2}'(c_{1n-2}-c_{1n-2}')).$$

- $f_{12,13}$ can not be continuously extended to the submanifolds in \overline{F}_{12} given by $\partial F_{12,ij} = \{c_{1i} = c'_{1i}, c_{1j} = c'_{1j}, 2 \le i < j \le n-2\}.$
- $\overline{F} \subset (\mathbb{C}P^1)^N$ is not an appropriate compactification of F.

One needs to blow up \overline{F}_{12} along the surfaces $\partial F_{12,ij}$, $2 \le i < j \le n-2$.

Definition

A space \mathcal{F} obtained by the blow ups of F_{12} along the surfaces $\partial F_{12,ij}$, $2 \leq i < j \leq n-2$ is called a universal space of parameters.

- For n = 5 there is just $\partial F_{12,23} = ((1:1), (1:1), (1:1))$ and \mathcal{F} is the blow up of $\overline{F} = \{((c_{12}:c_{12}'), (c_{13}:c_{13}'), (c_{23}:c_{23}')) \in (\mathbb{C}P^1)^3 | c_{12}'c_{13}c_{23}' = c_{12}c_{13}'c_{23} \}$ at the point ((1:1), (1:1), (1:1)).
- For n ≥ 6 the spaces ∂F_{12,ij} are not point and they intersect. The blow ups do now commute in general and the question of uniqueness arises.
- The compactification of $F = (\mathbb{C}P_A^1)^{n-3} \setminus \Delta$ provided by S. Keel is exactly done by an iterated blow ups. It gives a smooth, compact algebraic variety and it coincides with Chow quotient of $G_{n,2}$ by Kapranov and with Grotendick-Knudsen compactification $\overline{M_{0,n}}$ of the moduli space of smooth pointed curves of genus zero.

Virtual spaces of parameters

Proposition. For any chart M_{ij} and any stratum W_{σ} there is a subspace $\tilde{F}_{\sigma,ij} \subset \mathcal{F}_{ij}$ whose homeomorphic type $\tilde{F}_{\sigma,ij}$ depends on the stratum W_{σ} but it does not depend on the chart M_{ij} .

Definition The homeomorphic type \tilde{F}_{σ} of the space $\tilde{F}_{\sigma,ij}$ is called the virtual space of parameters for the stratum W_{σ} .

Definition The virtual space of parameters \tilde{F}_{C_S} for a chamber C_S is defined by

$$\tilde{F}_{C_{S}} = \bigcup_{C_{S} \subset \overset{\circ}{P}_{\sigma}} \tilde{F}_{\sigma} \subset \mathcal{F}.$$
(4)

 \tilde{F}_{C_S} is a formal disjoint union, so it is defined the function $m : \tilde{F}_{C_S} \to \Sigma$ by $m(y) = \sigma$ if and only if $y \in \tilde{F}_{\sigma}$.

Ilustration

Let $W_{\sigma} \subset M_{12}$, given by

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ z_{31} & z_{32} \\ z_{41} & z_{42} \\ z_{51} & 0 \\ \vdots & \vdots \\ z_{n-2,1} & 0 \end{pmatrix} z_{ij} \neq 0 \text{ and } z_{31}z_{42} = z_{41}z_{32}$$

$$ilde{\mathcal{F}}_{\sigma,12}=((c_{ij}:c_{ij}^{'}))\in\mathbb{C}\mathcal{P}^{\mathcal{N}},\mathcal{N}=inom{n-2}{2},$$

$$(c_{1i}:c_{1i}^{'}) = (1:0), i = 2, 3, 4, (c_{2i}:c_{2i}^{'}) = (0:1), i \ge 3$$

 $(c_{34}:c_{34}^{'}) = (1:1), (c_{3i}:c_{3i}^{'}) = (c_{4i}:c_{4i}^{'}) = (1:0), i \ge 5$
 $(c_{1i}:c_{1i}^{'}) \in \mathbb{C}P^{1}, i \ge 5, (c_{kl}:c_{kl}^{'}) \in \mathbb{C}P^{1}, k \ge 5$

Ilustration

 $W_{\sigma} \subset M_{13}$ is given by

$$\begin{pmatrix} 1 & 0 \\ w_{21} & w_{22} \\ 0 & 1 \\ 0 & w_{42} \\ w_{51} & 0 \\ \vdots & \vdots \\ w_{n-2,1} & 0 \end{pmatrix} \quad w_{ij} \neq 0 \quad (\text{note}: F_{\sigma} - \text{point})$$

$$ilde{\mathcal{F}}_{\sigma,13}=((d_{ij}:d_{ij}^{'}))\in\mathbb{C}\mathcal{P}^{\mathcal{N}},\mathcal{N}=inom{n-2}{2},$$

 $(d_{1i}:d'_{1i}) = (1:0), i = 2, 3, 4, \ (d_{1i}:d'_{1i}) \in \mathbb{C}P^1, \ i \ge 5$ $(d_{2i}:d'_{2i}) = (1:0), i = 3, 4, \ (d_{2i}:d'_{2i}) = (d_{4i}:d'_{4i}) = (0:1), i \ge 5$ $(d_{34}:d'_{34}) \in \mathbb{C}P^1, \ (d_{3i}:d'_{3i}) = (1:0), i \ge 5, \ (d_{kl}:d'_{kl}) \in \mathbb{C}P^1, \ k \ge 5$

Virtual and real spaces of parameters

There are two spaces of parameters for a stratum W_{σ} in a chart M_{ij} :

•
$$F_{\sigma,ij}$$
 such that $W_{\sigma,ij}/T^{\sigma}\cong \stackrel{\,\,{}_\circ}{P}_{\sigma} imes F_{\sigma,ij}$,

• $\tilde{F}_{\sigma,ij}$ - the virtual space of parameters defined by $W_{\sigma,ij}/T^{\sigma} \subset \partial(W_{ij}/T^{n-1}) \subset P^k \times \mathcal{F}_{ij}$

The spaces $F_{\sigma,ij}$ and $\tilde{F}_{\sigma,ij}$ do not coincide in generel (even for $G_{4,2}$). We prove:

Theorem

There exists the canonical projection $p_{\sigma,ij}: \tilde{F}_{\sigma,ij} \to F_{\sigma,ij}$ for any σ .

Corollary

There exists the canonical projection $p_{C_S,ij} : \tilde{F}_{C_S,ij} \to F_{C_S,ij}$ defined by $p_{C_S,ij}(y) = p_{m(y),ij}(y)$. where $y \in \tilde{F}_{\sigma,ij}$.

The orbit space $G_{n,2}/T^n$

Let us consider the weighted lattice

$$\mathfrak{C} = \mathcal{W}L(\Delta_{n,2}) = \bigcup_{C_S} (C_S \times \tilde{F}_C),$$
(5)

There is a canonical embedding

$$h: \mathfrak{C} \to \Delta_{n,2} \times \mathcal{F}, \ h(x, f_{C_S}) = (x, i_{C_S}(f_{C_S})),$$

 $i_{C_S}: \tilde{F}_{C_S} \to \mathcal{F}$ is given by the inclusion $\tilde{F}_{\sigma,ij} \to \mathcal{F}_{ij}$ in a fixed chart M_{ij} . The map h defines the topology on \mathfrak{C} :

 $U \subset \mathfrak{C}$ is an open set if and only if h(U) is an open set in $\Delta_{n,2} \times \mathcal{F}$.

On the other hand there is a homeomoprhism:

$$h_{C_S,ij}: C_S \times F_{C_S,ij} \to M_{C_S}/T^{n-1}$$

The orbit space $G_{n,2}/T^n$

For any fixed chart M_{ij} we define the map

$$G_{ij}: \mathfrak{C}_{ij} o G_{n,2}/T^n, \ \ G_{ij}(x,y) = h_{\mathcal{C}_S,ij}(x,p_{\mathcal{C}_S,ij}(y)),$$

For $(x,y) \in \mathcal{C}_S imes ilde{\mathcal{F}}_{\mathcal{C}_S,ij}$

Theorem

The map G_{ij} is a continuous surjection and the orbit space $G_{n,2}/T^n$ is homeomorphic to the quotient of the space \mathfrak{E} by the map G_{ij} .

Toric topology 2019, Okayama, November 1