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Toric Topology in Okayama

Motivation

We study the upper estimate on the GKM-torus T dimension acting on a
fixed smooth mfd M2" by the rank of the axial function group [Ku]. In
particular, we develop:

m Computational methods for the axial function group in terms of sheaf
theory;

m Necessary conditions on invariant functions of GKM-graphs
(“monodromy relations” on weighted cycle graphs).
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GKM-action

Smooth (usually compact) mfd M?", smooth effective action TX = (S1)¥
on M2", Tk.invariant almost complex structure on M, [MT| < oo.

n
T X"~ P V(w), wj = wj(x) € Hom(T*, T") ~ Z*.

j=1
Weights at x € M7 are called g-linearly independent if wj,(x), ..., wj,(x)
are linearly independent for any pairwise different ji, ..., jq € [n].

Definition

Tk : M is called a GKM-action, if the weights at x € M7 are 2-linearly
independent.
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Toric Topology in Okayama

GKM-manifolds and GKM-graphs

GKM-action T*: M?" ~» GKM-data (T, o, V)

 Theorem ([GuZal)

Let (I', o, V) be a GKM-graph. Then there exists a GKM-action T : M
with the GKM-graph (T, o, V).

Remark

In this theorem, the manifold M is complex, non-compact and is not
equivariantly formal.
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Toric Topology in Okayama

GKM-graph-I

Simple (i.e. no loops, no multiple edges), connected, finite n-valent graph
r=(V(N),E(T)), e = (i(e), t(e)), € = (t(e),i(e)),
E,(T) ={ee E(IN)| i(e) = v}.

[ Definition
A collection of bijections Ve : Ej¢)(I') — Eg()(I') is called a connection
onTl, if

Ve=(Ve) ™}, Ve(e) =<

A connected subgraph " C T is called a face of T, if Vee' € E(I) for
any e, e’ € E (I"), v e V().
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GKM-graph-II

Definition
Axial function o : E(I') — Hom(T*, T) ~ Zk on T satisfies

a(e) = —a(e), a(Vee') — ale) = ce(€) - afe), (1)

for any e € E(I'), €' € Ej)() and some ce(e’) € Z.

The rank rka := rkZ{a(e)| e € E,(I')) = k of axial function is
well-defined. We require rk o = k.
(I, a, V) is called the GKM-graph [GuZa].

Proposition

If a is (q + 1)-linearly independent, then for any v € V(I'), any
pairwise-different edges e1,...,eq € E, (') span a g-face in . (We call
such a connection V the q-complete connection.)
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Invariant and axial functions

Definition
An invariant function on (I, V) is (c(e))eck(r), c(e) € ZEj)(T) = Z"
s.t.

(c(e),e) = —2, Vec(e) = c(e) ((e,€') = 62).

(I, o, V) defines the invariant function c as c(e) :== Y.  ce(€) - €.
e’eEi(e)(F)

Definition (Different denotation from [Ku])
The group A(l", o, V) of axial functions is the set of (f(v)),ev(r) st

f(t(e)) = Ve(fie) + (f(i(e)). ) - c(e)), e € E(T),

with vertex-wise summation.

A(T,a, V) is a free abelian group of rank < n.
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Toric Topology in Okayama

Estimate on dim T

Consider GKM-actions TX C T": M?" with (T, o, V), (I, 0/, V'), resp.

One has " =T, a = wa for 7 : Z" — Zk.

a is 3-linearly independent = (I, &) admits < 1 connection, i.e. V' = V.

Theorem (S. Kuroki [Ku])
r<rk AT, a, V).

Applications: torus actions of max dimension
m T Gy (CF2);

= Milnor hypersurface T/ : Hij, 0<i <.

Not easy to compute A(l, o, V)!
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Sheaves: basics

Poset category O(X) of open subspaces in top. space X.

Pre-sheaf: contravariant functor O(X) — C to sets, groups, rings, etc.
Sheaf: pre-sheaf satisfying gluing and locality axioms.

Constant sheaf A: sheaving of C(U, A), with discrete top. on A.

Locally constant sheaf F: open cover (U;), F|y, isom. to constant sheaf.
Ringed space: (X, Ox), where Ox is a sheaf of rings.

Locally free sheaf F of Ox-modules: stalks F are free Ox «-modules (we
consider only finitely presented sheaves).
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Sheaves on GKM-graphs: Topology

H3(M) isom. to the global sections of a locally free sheaf of graded rings
on ' [BrMc], [Ba].

Graph topology (T. Baird [Ba])

Let Topl = V/(I') U E(I") be the topological space with the topology
generated by open sets U, = {v}, U. = {e,i(e), t(e)}, where e € E(T),
v € V(I). (Open sets=subgraphs, closed sets=unions of edges.)

Top [ is connected, locally path connected, semi-locally simply connected,
but not Hausdorff.

Continuous paths 7 : [0,1] — Top [ with ends at vertices are step
functions with ordered values of the form

{i(e1), e1,t(er), e,...,t(eg—1), €q, t(eq)}, Where eq, ..., eq is an edge
path in .

m1(TopT; v) ~ w1 (T, v) is a free group of rank E(I') — E(I") for a maximal
tree ["in T,



Sheaves on GKM-graphs: local systems

Let X be a path connected top. space. Continuous paths P(X) in X.

Definition

A collection G of groups Gy, x € X, and homomorphisms

¢~ : Gy — Gy, depending only on the homotopy type of v € P(X), is
called the local system of groups on X. Composition rule. ¢, = Idg, .
Fiber G. Morphisms.

Theorem

Cat’s of locally constant sheaves of f.g. groups on X and local systems
on X are equivalent.

Local system on Top £} Group G and homomorphisms we, € € E(T).
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Sheaves on GKM-graphs: examples-|

Example
We define the local system C = C(I', o, V) as C, = ZE,(T'), and

@e 1 Cite) = Ceey, x> Ve(x + (x, ) - c(e)). (2)

It is well-defined and A(T, o, V) = C(T).

[ Definition
Define A’ = A'(I', V, ¢) to be the group of homomorphisms
a: E(I') — Z" satisfying

a(Vee') — a(€') = (c(e), €') - afe). (3)

We call A’ the group of label functions on (I, V, ¢).
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Sheaves on GKM-graphs: examples-II

For a € A, there is rka. Axial functions on (I, V) with inv. function ¢
are those elements of A’ of rank k which are 2-linearly independent.

'Example
Define the local system C’ on (TopT, V) by C|, = Hom(ZE,(T),Z"), and

@e i Cie) = Ce(e)s X > pe(x),

pe(x)(Vee') = x(€') + (c(e), &) - x(e), € € Ej(e)(I). (4)
C’ is well-defined and A’ = C'(T).

[ Theorem (—, '19)

Sheaf isom. C' ~ C®". In particular, group isom. A’ ~ A9".
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Global sections as monodromy invariants

Path connected top. space X, locally constant sheaf G on X with fiber G.
There is the monodromy representation

m1(X, x0) = Aut G, (5)

of the group m1(X, x0).

Proposition

G is completely determined by (5). There is the group isomorphism

G(X) = GmX»0),

Choosing generators aj, ..., a, of m1(X, xg) one can compute
GMXx0) = N_, Fg(a;), where Fg = Ker(A; — Id) C G, and A; € Aut G
corresponds to a;.
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Gluing global sections from invariant loops

Open cover (U;)jes of X.

Global sections s € G(X) s a collection si € G(U) s.t.
Si‘UiﬁUj = sj’U,'ﬂUJ“

Consider (I, V).

If V is 2-complete, then there exists open cover of Top [ by invariant loops
~i (i.e. invariant simple cycles), i =1,...,r.

Computation of G(X)

1) compute G(i);
2) glue sections together.
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Loop shellings-|

[ Definition
We call {v;}/_; the loop shelling of T, if

t

(U Vi) N Yet1s (6)

i=1

is connected for any t =1,...,r — 1.

For a loop-shelling, choose vertices v; in intersection (6).

Proposition

si € G(vi) agree iff (si)y, = (Six1)v,, i =1,...,r — 1.
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Loop shellings-II

Definition ([BrMa])

For a pure k-dimensional polytopal complex U in R”, its facets

F1,..., Fq are shelling, if either k = 0, or (|J;, Fi) N F, is isomorphic to
a triangulation of A¥~1 for a=2,...,q (= connected). Shellable.

Theorem (Bruggesser, Mani [BrMal))
For a convex polytope P", OP is shellable.

Let Tk : M?" be a GKM-action on a Hamiltonian mfd with (I', a, V).

Proposition
Let k = 3. Then there is a loop-shelling on T .

Is sk? P shellable? Implies the above for arbitrary k > 4.



Sections of C over invariant loops

Inv. edge loop v = (e, ..., eq) in (I, V). Monodromy operator ([Ta])
|_|7 : ZE,‘(,Y)(F) — ZEt(V)(F), € +— Veq 0---0 Vel(e).

Call an edge e € E,(I') internal, if e € E, ("), and external, otherwise.
Introduce variables s = ZeeEu(r) Ve - € € Cy, inner ye span Vj,:. One has

¢Cs(u) — s(u) = My (s(u)) — s(u) mod Vipe.

Corollary

If N, acts trivially on ext. edges, then the subspace Fc(y) C C, is given
by s.l.e. on 2 internal variables.

Proposition

If (T, V) admits 4-linearly independent axial function «, then ., acts
identically on external edges.
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Invariant functions admitting axials

Let v = (e1, ..., eq) be an edge loop in I'. Define integers
ar 1= <C(er)7 er—1>? b, = <C(er)7 I_I’Yr—l(e)>‘

a;'s are independent on the orientation of ~y. Let
0 -1
a=( ).

Suppose that (I', V) with 2-complete V admits an axial function with
invariant function c. Then 2q + 2 equations hold (in cyclic order):

Proposition

Agir--Ar=1d, r=1,....q, (7)

b1A1_|_..._|_quq...A1:0.

Similar to toric surfaces classification (weighted dual graphs, [Oda]).

Grigory Solomadin  RUDN = 18 November, 2019 18 / 22



Toric Topology in Okayama

Monodromy relations-I

Fig.: 3-gons and 4-gons

Fig.: 5-gons
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Toric Topology in Okayama

Monodromy relations-I|

Fig.: 6-gons
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Finding axials

Corollary

Let v be an invariant loop of length q admitting axial. If c|, =0, then
g =0 (mod 4).

Proposition

Let V be 2-complete. Then o € C'(T') is an axial iff rky oo = 2 for any
invariant loop 7.

Joint vertices: Choose {w;}ie; C V(I) s.t. any invariant loop in I’
contains some w;.

Corollary

a € C'(T) is an axial iff (), is 2-linearly independent, i € I.
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Toric Topology in Okayama

Invariant functions on A3 admitting axials

Remark

1:1 . .
2-complete V 4% Invariant loops in I'.

Fig.: 2-complete connections on the edge graph (gray) of A3. All a; are: left —1;
right 0.

AN A

No loop-shelling on the right.
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ric Topology in Okayama

Thank you!
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Toric Topology in Okayama

Bonus: Why invariant functions are important?

[ ]
Let M2" be a non- smgular toric projective variety with T -action. Let =
be a Delzant moment polytope of M?".

Proposition

[ is the edge graph of P". Inv. function ¢ and (I', V) determines o and
P" up to GL,(Z)-action.

i i B
For an edge e Ie E(I), define the eurvature d_fel' by

. - V.S Z (c(e), €).

I- e’eE,-(e)(l') ¥ .I | BT

Proposition ([Ay])

For n =3, one has )  curve =48.
ecE(lN)
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