Toric Topology 2019 in Okayama

Grigory Solomadin

Nikolskii' Mathematical Institute RUDN

grigory.solomadin@gmail.com Sheaves on GKM-graphs and the group of axial functions

Okayama University of Science, Okayama

18 November, 2019

We study the upper estimate on the GKM-torus T dimension acting on a fixed smooth mfd M^{2n} by the rank of the axial function group [Ku]. In particular, we develop:

- Computational methods for the axial function group in terms of sheaf theory;
- Necessary conditions on invariant functions of GKM-graphs ("monodromy relations" on weighted cycle graphs).

GKM-action

Smooth (usually compact) mfd M^{2n} , smooth effective action $T^k = (S^1)^k$ on M^{2n} , T^k -invariant almost complex structure on M, $|M^T| < \infty$.

$$T_X X^n \simeq \bigoplus_{j=1}^n V(w_j), \ w_j = w_j(x) \in \operatorname{Hom}(T^k, T^1) \simeq \mathbb{Z}^k.$$

Weights at $x \in M^T$ are called *q*-linearly independent if $w_{j_1}(x), \ldots, w_{j_q}(x)$ are linearly independent for any pairwise different $j_1, \ldots, j_q \in [n]$.

Definition

 T^k : M is called a GKM-action, if the weights at $x \in M^T$ are 2-linearly independent.

GKM-manifolds and GKM-graphs

GKM-action $T^k: M^{2n} \rightsquigarrow$ GKM-data (Γ, α, ∇)

Theorem ([GuZa])

Let (Γ, α, ∇) be a GKM-graph. Then there exists a GKM-action T : M with the GKM-graph (Γ, α, ∇) .

Remark

In this theorem, the manifold M is complex, non-compact and is not equivariantly formal.

GKM-graph-I

Simple (i.e. no loops, no multiple edges), connected, finite *n*-valent graph $\Gamma = (V(\Gamma), E(\Gamma)), e = (i(e), t(e)), \overline{e} = (t(e), i(e)), E_v(\Gamma) = \{e \in E(\Gamma) | i(e) = v\}.$

Definition

A collection of bijections $\nabla_e : E_{i(e)}(\Gamma) \to E_{t(e)}(\Gamma)$ is called a connection on Γ , if

$$\nabla_{\overline{e}} = (\nabla_e)^{-1}, \ \nabla_e(e) = \overline{e}.$$

A connected subgraph $\Gamma' \subseteq \Gamma$ is called a face of Γ , if $\nabla_e e' \in E(\Gamma')$ for any $e, e' \in E_v(\Gamma')$, $v \in V(\Gamma')$.

GKM-graph-II

Definition

Axial function α : $E(\Gamma) \to Hom(\mathbb{T}^k, \mathbb{T}) \simeq \mathbb{Z}^k$ on Γ satisfies

$$\alpha(\overline{e}) = -\alpha(e), \ \alpha(\nabla_e e') - \alpha(e') = c_e(e') \cdot \alpha(e), \tag{1}$$

for any $e \in E(\Gamma)$, $e' \in E_{i(e)}(\Gamma)$ and some $c_e(e') \in \mathbb{Z}$.

The rank $\operatorname{rk} \alpha := \operatorname{rk} \mathbb{Z} \langle \alpha(e) | e \in E_{v}(\Gamma) \rangle = k$ of axial function is well-defined. We require $\operatorname{rk} \alpha = k$. (Γ, α, ∇) is called the GKM-graph [GuZa].

Proposition

If α is (q + 1)-linearly independent, then for any $v \in V(\Gamma)$, any pairwise-different edges $e_1, \ldots, e_q \in E_v(\Gamma)$ span a q-face in Γ . (We call such a connection ∇ the q-complete connection.)

Invariant and axial functions

Definition

An invariant function on (Γ, ∇) is $(c(e))_{e \in E(\Gamma)}$, $c(e) \in \mathbb{Z}E_{i(e)}(\Gamma) \simeq \mathbb{Z}^n$ s.t.

$$\langle c(e), e
angle = -2, \
abla_e c(e) = c(\overline{e}) \ (\langle e, e'
angle = \delta_e^{e'}).$$

 (Γ, α, ∇) defines the invariant function c as $c(e) := \sum_{e' \in E_{i(e)}(\Gamma)} c_e(e') \cdot e'$.

Definition (Different denotation from [Ku])

The group $\mathcal{A}(\Gamma, \alpha, \nabla)$ of axial functions is the set of $(f(v))_{v \in V(\Gamma)}$ s.t.

$$f(t(e)) =
abla_e ig(f_{i(e)} + \langle f(i(e)), e
angle \cdot c(e) ig), \ e \in E(\Gamma),$$

with vertex-wise summation.

$\mathcal{A}(\Gamma, \alpha, \nabla)$ is a free abelian group of rank $\leqslant n$.

Estimate on dim T

Consider GKM-actions $T^k \subseteq T^r : M^{2n}$ with (Γ, α, ∇) , $(\Gamma', \alpha', \nabla')$, resp. One has $\Gamma' = \Gamma$, $\alpha = \pi \alpha'$ for $\pi : \mathbb{Z}^r \to \mathbb{Z}^k$.

 α is 3-linearly independent \Rightarrow (Γ, α) admits \leqslant 1 connection, i.e. $\nabla' = \nabla$.

Theorem (S. Kuroki [Ku]) $r \leq \operatorname{rk} \mathcal{A}(\Gamma, \alpha, \nabla).$

Applications: torus actions of max dimension

•
$$T^{n+1}: G_2(\mathbb{C}^{n+2});$$

• Milnor hypersurface T^j : $H_{i,j}$, $0 \leq i < j$.

Not easy to compute $\mathcal{A}(\Gamma, \alpha, \nabla)!$

Sheaves: basics

- Poset category O(X) of open subspaces in top. space X.
- **Pre-sheaf**: contravariant functor $O(X) \rightarrow C$ to sets, groups, rings, etc.
- Sheaf: pre-sheaf satisfying gluing and locality axioms.
- Constant sheaf <u>A</u>: sheaving of C(U, A), with discrete top. on A.
- Locally constant sheaf \mathcal{F} : open cover (U_i) , $\mathcal{F}|_{U_i}$ isom. to constant sheaf.
- Ringed space: (X, \mathcal{O}_X) , where \mathcal{O}_X is a sheaf of rings.
- Locally free sheaf \mathcal{F} of \mathcal{O}_X -modules: stalks \mathcal{F}_x are free $\mathcal{O}_{X,x}$ -modules (we consider only finitely presented sheaves).

Sheaves on GKM-graphs: Topology

 $H^*_T(M)$ isom. to the global sections of a locally free sheaf of graded rings on Γ [BrMc], [Ba].

Graph topology (T. Baird [Ba])

Let Top $\Gamma = V(\Gamma) \sqcup E(\Gamma)$ be the topological space with the topology generated by open sets $U_v = \{v\}$, $U_e = \{e, i(e), t(e)\}$, where $e \in E(\Gamma)$, $v \in V(\Gamma)$. (Open sets=subgraphs, closed sets=unions of edges.)

Top Γ is connected, locally path connected, semi-locally simply connected, but not Hausdorff.

Continuous paths γ : $[0,1] \to \text{Top }\Gamma$ with ends at vertices are step functions with ordered values of the form

 $\{i(e_1), e_1, t(e_1), e_2, \dots, t(e_{q-1}), e_q, t(e_q)\}$, where e_1, \dots, e_q is an edge path in Γ .

 $\pi_1(\text{Top }\Gamma; v) \simeq \pi_1(\Gamma, v)$ is a free group of rank $E(\Gamma) - E(\Gamma')$ for a maximal tree Γ' in Γ .

Sheaves on GKM-graphs: local systems

Let X be a path connected top. space. Continuous paths P(X) in X.

Definition

A collection \mathcal{G} of groups G_x , $x \in X$, and homomorphisms $\varphi_{\gamma}: G_{x_1} \to G_{x_2}$ depending only on the homotopy type of $\gamma \in P(X)$, is called the local system of groups on X. Composition rule. $\varphi_x = Id_{G_x}$. Fiber G. Morphisms.

Theorem

Cat's of locally constant sheaves of f.g. groups on X and local systems on X are equivalent.

Local system on Top $\Gamma \stackrel{1:1}{\leftrightarrow}$ Group *G* and homomorphisms φ_e , $e \in E(\Gamma)$.

Sheaves on GKM-graphs: examples-I

Example

We define the local system $C = C(\Gamma, \alpha, \nabla)$ as $C_u = \mathbb{Z}E_u(\Gamma)$, and

$$\varphi_{e}: \ \mathcal{C}_{i(e)} \to \mathcal{C}_{t(e)}, \ x \mapsto \nabla_{e}(x + \langle x, e \rangle \cdot c(e)).$$
 (2)

It is well-defined and $\mathcal{A}(\Gamma, \alpha, \nabla) = \mathcal{C}(\Gamma)$.

Definition

Define $\mathcal{A}' = \mathcal{A}'(\Gamma, \nabla, c)$ to be the group of homomorphisms $\alpha : E(\Gamma) \to \mathbb{Z}^n$ satisfying

$$\alpha(\nabla_{e}e') - \alpha(e') = \langle c(e), e' \rangle \cdot \alpha(e).$$
(3)

We call \mathcal{A}' the group of label functions on (Γ, ∇, c) .

Sheaves on GKM-graphs: examples-II

For $\alpha \in \mathcal{A}'$, there is $\operatorname{rk} \alpha$. Axial functions on (Γ, ∇) with inv. function c are those elements of \mathcal{A}' of rank k which are 2-linearly independent.

Example

Define the local system C' on $(\text{Top }\Gamma, V)$ by $C'_u = \text{Hom}(\mathbb{Z}E_u(\Gamma), \mathbb{Z}^n)$, and

$$\varphi_e: \ \mathcal{C}_{i(e)} \to \mathcal{C}_{t(e)}, \ x \mapsto \varphi_e(x),$$

$$\varphi_e(x)(\nabla_e e') = x(e') + \langle c(e), e' \rangle \cdot x(e), \ e' \in E_{i(e)}(\Gamma).$$
(4)

 \mathcal{C}' is well-defined and $\mathcal{A}' = \mathcal{C}'(\Gamma)$.

Theorem (—, '19)

Sheaf isom. $\mathcal{C}' \simeq \mathcal{C}^{\oplus n}$. In particular, group isom. $\mathcal{A}' \simeq \mathcal{A}^{\oplus n}$.

Global sections as monodromy invariants

Path connected top. space X, locally constant sheaf G on X with fiber G. There is the monodromy representation

$$\pi_1(X, x_0) \to \operatorname{Aut} G, \tag{5}$$

of the group $\pi_1(X, x_0)$.

Proposition

 \mathcal{G} is completely determined by (5). There is the group isomorphism

 $\mathcal{G}(X)\simeq G^{\pi_1(X,x_0)}.$

Choosing generators a_1, \ldots, a_r of $\pi_1(X, x_0)$ one can compute $G^{\pi_1(X, x_0)} = \bigcap_{i=1}^r F_{\mathcal{G}}(a_i)$, where $F_{\mathcal{G}} = \operatorname{Ker}(A_i - Id) \subseteq G$, and $A_i \in \operatorname{Aut} G$ corresponds to a_i .

Gluing global sections from invariant loops

Open cover $(U_i)_{i \in I}$ of X. Global sections $s \in \mathcal{G}(X) \stackrel{1:1}{\leftrightarrow}$ is a collection $s_i \in \mathcal{G}(U_i)$ s.t.

$$s_i|_{U_i\cap U_j}=s_j|_{U_i\cap U_j}.$$

Consider (Γ, ∇) .

If ∇ is 2-complete, then there exists open cover of Top Γ by invariant loops γ_i (i.e. invariant simple cycles), $i = 1, \ldots, r$.

Computation of $\mathcal{G}(X)$

1) compute $\mathcal{G}(\gamma_i)$;

2) glue sections together.

Loop shellings-I

Definition We call $\{\gamma_i\}_{i=1}^r$ the loop shelling of Γ , if $(\bigcup_{i=1}^t \gamma_i) \cap \gamma_{t+1},$ is connected for any $t = 1, \dots, r - 1$.

For a loop-shelling, choose vertices v_i in intersection (6).

Proposition $s_i \in \mathcal{G}(\gamma_i)$ agree iff $(s_i)_{v_i} = (s_{i+1})_{v_i}$, $i = 1, \dots, r-1$.

(6)

Loop shellings-II

Definition ([BrMa])

For a pure k-dimensional polytopal complex \mathcal{U} in \mathbb{R}^n , its facets F_1, \ldots, F_q are shelling, if either k = 0, or $(\bigcup_{i < a} F_i) \cap F_a$ is isomorphic to a triangulation of Δ^{k-1} for $a = 2, \ldots, q$ (\Rightarrow connected). Shellable.

Theorem (Bruggesser, Mani [BrMa])

For a convex polytope P^n , ∂P is shellable.

Let T^k : M^{2n} be a GKM-action on a Hamiltonian mfd with (Γ, α, ∇) .

Proposition

Let k = 3. Then there is a loop-shelling on Γ .

Is $sk^2 P$ shellable? Implies the above for arbitrary $k \ge 4$.

Sections of $\mathcal C$ over invariant loops

Inv. edge loop $\gamma = (e_1, \dots, e_q)$ in (Γ, ∇) . Monodromy operator ([Ta]) $\Pi_{\gamma} : \mathbb{Z}E_{i(\gamma)}(\Gamma) \to \mathbb{Z}E_{t(\gamma)}(\Gamma), \ e \mapsto \nabla_{e_q} \circ \cdots \circ \nabla_{e_1}(e).$

Call an edge $e \in E_v(\Gamma)$ internal, if $e \in E_v(\Gamma')$, and external, otherwise. Introduce variables $s = \sum_{e \in E_u(\Gamma)} y_e \cdot e \in C_v$, inner y_e span V_{int} . One has

$$arphi_{\gamma}^{\mathcal{C}} s(u) - s(u) \equiv \Pi_{\gamma}(s(u)) - s(u) \mod V_{int}.$$

Corollary

If Π_{γ} acts trivially on ext. edges, then the subspace $F_{\mathcal{C}}(\gamma) \subseteq C_{\nu}$ is given by s.l.e. on 2 internal variables.

Proposition

If (Γ, ∇) admits 4-linearly independent axial function α , then Π_{γ} acts identically on external edges.

Invariant functions admitting axials

Let $\gamma = (e_1, \dots, e_q)$ be an edge loop in Γ . Define integers $a_r := \langle c(e_r), \overline{e_{r-1}} \rangle, \ b_r := \langle c(e_r), \Pi_{\gamma_{r-1}}(e) \rangle.$

 a_i 's are independent on the orientation of γ . Let

$$A_i := egin{pmatrix} 0 & -1 \ 1 & -a_i \end{pmatrix}.$$

Proposition

Suppose that (Γ, ∇) with 2-complete ∇ admits an axial function with invariant function c. Then 2q + 2 equations hold (in cyclic order):

$$A_{q+r} \cdots A_r = \text{Id}, \ r = 1, \dots, q,$$

$$b_1 A_1 + \dots + b_q A_q \cdots A_1 = 0.$$
(7)

Similar to toric surfaces classification (weighted dual graphs, [Oda]).

Monodromy relations-I

Monodromy relations-II

Finding axials

Corollary

Let γ be an invariant loop of length q admitting axial. If $c|_{\gamma} = 0$, then $q \equiv 0 \pmod{4}$.

Proposition

Let ∇ be 2-complete. Then $\alpha \in C'(\Gamma)$ is an axial iff $\operatorname{rk}_{\gamma} \alpha = 2$ for any invariant loop γ .

Joint vertices: Choose $\{w_i\}_{i \in I} \subseteq V(\Gamma)$ s.t. any invariant loop in Γ contains some w_i .

Corollary

 $\alpha \in \mathcal{C}'(\Gamma)$ is an axial iff $(\alpha)_{w_i}$ is 2-linearly independent, $i \in I$.

Invariant functions on Δ^3 admitting axials

Remark

2-complete $\nabla \stackrel{1:1}{\leftrightarrow}$ Invariant loops in Γ .

Fig.: 2-complete connections on the edge graph (gray) of Δ^3 . All a_i are: left -1; right 0.

No loop-shelling on the right.

Bibliography I

Audin, Michèle.

Torus actions on symplectic manifolds Birkhäuser Verlag Basel Boston Berlin, 1991

Ayzenberg, A.

Toric manifolds over 3-polytopes ArXiv:1607.03377 (preprint)

Baird, T.

GKM-sheaves and nonorientable surface group representations

J. Symplectic Geom., 4, 867–921, 2014

Braden, T., MacPherson, R.

From moment graphs to intersection cohomology

Math. Ann., 321, 533-551, 2001

Bibliography II

Bruggesser, H., Mani, P.

Shellable decompositions of cells and spheres

Math. Scand., 29, 197–205, 1971

Guillemin, V., Holm, T.

 GKM theory for torus actions with nonisolated fixed points

Int. Math. Res. Notes, 40, 2105–2124, 2004

Equivariant cohomology, Koszul duality, and the localization theorem *Invent. Math.*, 131, 25–83, 1998

Guillemin, V., Zara, C.

1-skeleta, Betti numbers, and equivariant cohomology Duke Math. J., 2, 283–349, 2001

Kuroki, Shintarô

Upper bounds for the dimension of tori acting on GKM manifolds

J. Math. Soc. Japan, 71:2, 483-513, 2019

Bibliography III

Oda, T.

Convex bodies and algebraic geometry

Springer-Verlag; Tokyo, viii+212pp., 1985

 ${\small Solomadin, \ G.}$

Sheaves on graphs and the group of axial functions

In preparation

Szamuely, T.

Galois groups and fundamental groups

Cambridge University Press, 2009

Takuma, S.

Extendability of symplectic torus actions with isolated fixedpoints

RIMS Kokyuroku, 1393, 72-78, 2004

Thank you!

Bonus: why invariant functions are important?

Let M^{2n} be a non-singular toric projective variety with T^n -action. Let P^n be a Delzant moment polytope of M^{2n} .

Proposition

 Γ is the edge graph of P^n . Inv. function c and (Γ, ∇) determines α and P^n up to $GL_n(\mathbb{Z})$ -action.

