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Motivation

We study the upper estimate on the GKM-torus T dimension acting on a
fixed smooth mfd M2n by the rank of the axial function group [Ku]. In
particular, we develop:

Computational methods for the axial function group in terms of sheaf
theory;

Necessary conditions on invariant functions of GKM-graphs
(“monodromy relations” on weighted cycle graphs).
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GKM-action

Smooth (usually compact) mfd M2n, smooth effective action T k = (S1)k

on M2n, T k -invariant almost complex structure on M, |MT | <∞.

TxX
n '

n⊕
j=1

V (wj), wj = wj(x) ∈ Hom(T k ,T 1) ' Zk .

Weights at x ∈ MT are called q-linearly independent if wj1(x), . . . ,wjq(x)
are linearly independent for any pairwise different j1, . . . , jq ∈ [n].

Definition

T k : M is called a GKM-action, if the weights at x ∈ MT are 2-linearly
independent.
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GKM-manifolds and GKM-graphs

GKM-action T k : M2n  GKM-data (Γ, α,∇)

Theorem ([GuZa])

Let (Γ, α,∇) be a GKM-graph. Then there exists a GKM-action T : M
with the GKM-graph (Γ, α,∇).

Remark

In this theorem, the manifold M is complex, non-compact and is not
equivariantly formal.
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GKM-graph-I

Simple (i.e. no loops, no multiple edges), connected, finite n-valent graph
Γ = (V (Γ),E (Γ)), e =

(
i(e), t(e)

)
, e =

(
t(e), i(e)

)
,

Ev (Γ) = {e ∈ E (Γ)| i(e) = v}.

Definition

A collection of bijections ∇e : Ei(e)(Γ)→ Et(e)(Γ) is called a connection
on Γ, if

∇e = (∇e)−1, ∇e(e) = e.

A connected subgraph Γ′ ⊆ Γ is called a face of Γ, if ∇ee
′ ∈ E (Γ′) for

any e, e ′ ∈ Ev (Γ′), v ∈ V (Γ′).
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GKM-graph-II

Definition

Axial function α : E (Γ)→ Hom(Tk ,T) ' Zk on Γ satisfies

α(e) = −α(e), α(∇ee
′)− α(e ′) = ce(e ′) · α(e), (1)

for any e ∈ E (Γ), e ′ ∈ Ei(e)(Γ) and some ce(e ′) ∈ Z.

The rank rkα := rkZ〈α(e)| e ∈ Ev (Γ)〉 = k of axial function is
well-defined. We require rkα = k.
(Γ, α,∇) is called the GKM-graph [GuZa].

Proposition

If α is (q + 1)-linearly independent, then for any v ∈ V (Γ), any
pairwise-different edges e1, . . . , eq ∈ Ev (Γ) span a q-face in Γ. (We call
such a connection ∇ the q-complete connection.)
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Invariant and axial functions

Definition

An invariant function on (Γ,∇) is (c(e))e∈E(Γ), c(e) ∈ ZEi(e)(Γ) ' Zn

s.t.
〈c(e), e〉 = −2, ∇ec(e) = c(e) (〈e, e ′〉 = δe

′
e ).

(Γ, α,∇) defines the invariant function c as c(e) :=
∑

e′∈Ei(e)(Γ)

ce(e ′) · e ′.

Definition (Different denotation from [Ku])

The group A(Γ, α,∇) of axial functions is the set of (f (v))v∈V (Γ) s.t.

f (t(e)) = ∇e

(
fi(e) + 〈f (i(e)), e〉 · c(e)

)
, e ∈ E (Γ),

with vertex-wise summation.

A(Γ, α,∇) is a free abelian group of rank 6 n.
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Estimate on dimT

Consider GKM-actions T k ⊆ T r : M2n with (Γ, α,∇), (Γ′, α′,∇′), resp.

One has Γ′ = Γ, α = πα′ for π : Zr → Zk .

α is 3-linearly independent ⇒ (Γ, α) admits 6 1 connection, i.e. ∇′ = ∇.

Theorem (S. Kuroki [Ku])

r 6 rkA(Γ, α,∇).

Applications: torus actions of max dimension

T n+1 : G2(Cn+2);

Milnor hypersurface T j : Hi ,j , 0 6 i < j .

Not easy to compute A(Γ, α,∇)!
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Sheaves: basics

Poset category O(X ) of open subspaces in top. space X .

Pre-sheaf: contravariant functor O(X )→ C to sets, groups, rings, etc.

Sheaf: pre-sheaf satisfying gluing and locality axioms.

Constant sheaf A: sheaving of C (U,A), with discrete top. on A.

Locally constant sheaf F : open cover (Ui ), F|Ui
isom. to constant sheaf.

Ringed space: (X ,OX ), where OX is a sheaf of rings.

Locally free sheaf F of OX -modules: stalks Fx are free OX ,x -modules (we
consider only finitely presented sheaves).
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Sheaves on GKM-graphs: Topology

H∗T (M) isom. to the global sections of a locally free sheaf of graded rings
on Γ [BrMc], [Ba].

Graph topology (T. Baird [Ba])

Let Top Γ = V (Γ) t E (Γ) be the topological space with the topology
generated by open sets Uv = {v}, Ue = {e, i(e), t(e)}, where e ∈ E (Γ),
v ∈ V (Γ). (Open sets=subgraphs, closed sets=unions of edges.)

Top Γ is connected, locally path connected, semi-locally simply connected,
but not Hausdorff.
Continuous paths γ : [0, 1]→ Top Γ with ends at vertices are step
functions with ordered values of the form
{i(e1), e1, t(e1), e2, . . . , t(eq−1), eq, t(eq)}, where e1, . . . , eq is an edge
path in Γ.
π1(Top Γ; v) ' π1(Γ, v) is a free group of rank E (Γ)− E (Γ′) for a maximal
tree Γ′ in Γ.
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Sheaves on GKM-graphs: local systems

Let X be a path connected top. space. Continuous paths P(X ) in X .

Definition

A collection G of groups Gx , x ∈ X , and homomorphisms
ϕγ : Gx1 → Gx2 depending only on the homotopy type of γ ∈ P(X ), is
called the local system of groups on X . Composition rule. ϕx = IdGx .
Fiber G . Morphisms.

Theorem

Cat’s of locally constant sheaves of f.g. groups on X and local systems
on X are equivalent.

Local system on Top Γ
1:1↔ Group G and homomorphisms ϕe , e ∈ E (Γ).
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Sheaves on GKM-graphs: examples-I

Example

We define the local system C = C(Γ, α,∇) as Cu = ZEu(Γ), and

ϕe : Ci(e) → Ct(e), x 7→ ∇e(x + 〈x , e〉 · c(e)). (2)

It is well-defined and A(Γ, α,∇) = C(Γ).

Definition

Define A′ = A′(Γ,∇, c) to be the group of homomorphisms
α : E (Γ)→ Zn satisfying

α(∇ee
′)− α(e ′) = 〈c(e), e ′〉 · α(e). (3)

We call A′ the group of label functions on (Γ,∇, c).
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Sheaves on GKM-graphs: examples-II

For α ∈ A′, there is rkα. Axial functions on (Γ,∇) with inv. function c
are those elements of A′ of rank k which are 2-linearly independent.

Example

Define the local system C′ on (Top Γ,V ) by C′u = Hom(ZEu(Γ),Zn), and

ϕe : Ci(e) → Ct(e), x 7→ ϕe(x),

ϕe(x)(∇ee
′) = x(e ′) + 〈c(e), e ′〉 · x(e), e ′ ∈ Ei(e)(Γ). (4)

C′ is well-defined and A′ = C′(Γ).

Theorem (—, ’19)

Sheaf isom. C′ ' C⊕n. In particular, group isom. A′ ' A⊕n.
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Global sections as monodromy invariants

Path connected top. space X , locally constant sheaf G on X with fiber G .
There is the monodromy representation

π1(X , x0)→ AutG , (5)

of the group π1(X , x0).

Proposition

G is completely determined by (5). There is the group isomorphism

G(X ) ' Gπ1(X ,x0).

Choosing generators a1, . . . , ar of π1(X , x0) one can compute
Gπ1(X ,x0) =

⋂r
i=1 FG(ai ), where FG = Ker(Ai − Id) ⊆ G , and Ai ∈ AutG

corresponds to ai .
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Gluing global sections from invariant loops

Open cover (Ui )i∈I of X .

Global sections s ∈ G(X )
1:1↔ is a collection si ∈ G(Ui ) s.t.

si |Ui∩Uj
= sj |Ui∩Uj

.

Consider (Γ,∇).

If ∇ is 2-complete, then there exists open cover of Top Γ by invariant loops
γi (i.e. invariant simple cycles), i = 1, . . . , r .

Computation of G(X )

1) compute G(γi );
2) glue sections together.
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Loop shellings-I

Definition

We call {γi}ri=1 the loop shelling of Γ, if

( t⋃
i=1

γi
)
∩ γt+1, (6)

is connected for any t = 1, . . . , r − 1.

For a loop-shelling, choose vertices vi in intersection (6).

Proposition

si ∈ G(γi ) agree iff (si )vi = (si+1)vi , i = 1, . . . , r − 1.
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Loop shellings-II

Definition ([BrMa])

For a pure k-dimensional polytopal complex U in Rn, its facets
F1, . . . ,Fq are shelling, if either k = 0, or (

⋃
i<a Fi ) ∩ Fa is isomorphic to

a triangulation of ∆k−1 for a = 2, . . . , q (⇒ connected). Shellable.

Theorem (Bruggesser, Mani [BrMa])

For a convex polytope Pn, ∂P is shellable.

Let T k : M2n be a GKM-action on a Hamiltonian mfd with (Γ, α,∇).

Proposition

Let k = 3. Then there is a loop-shelling on Γ.

Is sk2 P shellable? Implies the above for arbitrary k > 4.
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Sections of C over invariant loops

Inv. edge loop γ = (e1, . . . , eq) in (Γ,∇). Monodromy operator ([Ta])

Πγ : ZEi(γ)(Γ)→ ZEt(γ)(Γ), e 7→ ∇eq ◦ · · · ◦ ∇e1(e).

Call an edge e ∈ Ev (Γ) internal, if e ∈ Ev (Γ′), and external, otherwise.
Introduce variables s =

∑
e∈Eu(Γ) ye · e ∈ Cv , inner ye span Vint . One has

ϕCγs(u)− s(u) ≡ Πγ(s(u))− s(u) mod Vint .

Corollary

If Πγ acts trivially on ext. edges, then the subspace FC(γ) ⊆ Cv is given
by s.l.e. on 2 internal variables.

Proposition

If (Γ,∇) admits 4-linearly independent axial function α, then Πγ acts
identically on external edges.
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Invariant functions admitting axials

Let γ = (e1, . . . , eq) be an edge loop in Γ. Define integers

ar := 〈c(er ), er−1〉, br := 〈c(er ),Πγr−1(e)〉.
ai ’s are independent on the orientation of γ. Let

Ai :=

(
0 −1
1 −ai

)
.

Proposition

Suppose that (Γ,∇) with 2-complete ∇ admits an axial function with
invariant function c. Then 2q + 2 equations hold (in cyclic order):

Aq+r · · ·Ar = Id, r = 1, . . . , q, (7)

b1A1 + · · ·+ bqAq · · ·A1 = 0.

Similar to toric surfaces classification (weighted dual graphs, [Oda]).
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Monodromy relations-I

Fig.: 3-gons and 4-gons
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Monodromy relations-II

Fig.: 6-gons
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Finding axials

Corollary

Let γ be an invariant loop of length q admitting axial. If c |γ = 0, then
q ≡ 0 (mod 4).

Proposition

Let ∇ be 2-complete. Then α ∈ C′(Γ) is an axial iff rkγ α = 2 for any
invariant loop γ.

Joint vertices: Choose {wi}i∈I ⊆ V (Γ) s.t. any invariant loop in Γ
contains some wi .

Corollary

α ∈ C′(Γ) is an axial iff (α)wi is 2-linearly independent, i ∈ I .
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Invariant functions on ∆3 admitting axials

Remark

2-complete ∇ 1:1↔ Invariant loops in Γ.

Fig.: 2-complete connections on the edge graph (gray) of ∆3. All ai are: left −1;
right 0.

No loop-shelling on the right.
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Thank you!
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Bonus: why invariant functions are important?

Let M2n be a non-singular toric projective variety with T n-action. Let Pn

be a Delzant moment polytope of M2n.

Proposition

Γ is the edge graph of Pn. Inv. function c and (Γ,∇) determines α and
Pn up to GLn(Z)-action.

For an edge e ∈ E (Γ), define the curvature of e by

curv e = −
∑

e′∈Ei(e)(Γ)

〈c(e), e ′〉.

Proposition ([Ay])

For n = 3, one has
∑

e∈E(Γ)

curv e = 48.
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