Basic Dolbeault cohomology of Canonical foliations on Moment-angle Manifolds

Roman Krutowski
Higher School of Economics
roman.krutovskiy@protonmail.com
Toric Topology in Okayama
18-22 November, 2019

Let Σ be a complete simplicial fan in \mathbb{R}^{n} with generators a_{1}, \ldots, a_{m} and $\mathcal{K}=\mathcal{K}_{\Sigma}$ be the underlying simplicial complex. Let $m-n$ be an even integer number. Define a moment-angle manifold corresponding to \mathcal{K}

$$
\mathcal{Z}_{\mathcal{K}}:=\bigcup_{\mathcal{I} \in \mathcal{K}}\left(\prod_{i \in \mathcal{I}} \mathbb{D} \times \prod_{i \notin \mathcal{I}} \mathbb{S}\right) \subseteq \mathbb{D}^{m}
$$

Any moment-angle manifold $\mathcal{Z}_{\mathcal{K}}$ is equipped with a natural action of the torus by coordinate-wise multiplication

$$
T^{m}=\left\{\left(t_{1}, \ldots, t_{m}\right) \in \mathbb{C}^{m}:\left|t_{i}\right|=1\right\}
$$

The action is given by

$$
T^{m} \times \mathcal{Z}_{\mathcal{K}} \rightarrow \mathcal{Z}_{\mathcal{K}}:\left(\left(t_{1}, \ldots, t_{m}\right),\left(z_{1}, \ldots, z_{m}\right)\right) \mapsto\left(t_{1} z_{1}, \ldots, t_{m} z_{m}\right)
$$

Define

$$
U_{\mathcal{K}}=\bigcup_{\mathcal{I} \in \mathcal{K}}\left(\prod_{i \in \mathcal{I}} \mathbb{C} \times \prod_{i \notin \mathcal{I}} \mathbb{C}^{\times}\right) \subset \mathbb{C}^{m}
$$

Consider a linear map associated with Σ

$$
q: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}, \quad \boldsymbol{e}_{i} \mapsto a_{i} .
$$

Let us choose a complex structure in $\operatorname{Ker} q$. This is equivalent to a choice of an $\frac{m-n}{2}$-dimensional complex subspace $\mathfrak{h} \subset \mathbb{C}^{m}$ satisfying the two conditions:
(a) the composite $\mathfrak{h} \hookrightarrow \mathbb{C}^{m} \xrightarrow{\mathrm{Re}} \mathbb{R}^{m}$ is injective;
(b) the composite $\mathfrak{h} \hookrightarrow \mathbb{C}^{m} \xrightarrow{\mathrm{Re}} \mathbb{R}^{m} \xrightarrow{q} \mathbb{R}^{n}$ is zero.

Consider the $\frac{m-n}{2}$-dimensional complex-analytic subgroup

$$
H=\exp (\mathfrak{h}) \subset\left(\mathbb{C}^{\times}\right)^{m} .
$$

Introduce a space

$$
U_{\mathcal{K}}=\bigcup_{\mathcal{I} \in \mathcal{K}}\left(\prod_{i \in \mathcal{I}} \mathbb{C} \times \prod_{i \notin \mathcal{I}} \mathbb{C}^{\times}\right) \subset \mathbb{C}^{m} .
$$

Theorem (Panov, Ustinovskiy; 2012)

The group H acts properly, freely and holomorphically on $U_{\mathcal{K}}$. Moreover, there is a T^{m}-equivariant diffeomorphism $U_{\mathcal{K}} / H \cong \mathcal{Z}_{\mathcal{K}}$.

Define a real Lie subalgebra and the corresponding Lie group

$$
\mathfrak{r}=\operatorname{Ker} \boldsymbol{q}=\operatorname{Re}(\mathfrak{h}) \subset \mathbb{R}^{m}=\mathfrak{t}, \quad R=\exp (\mathfrak{r}) \subset T^{m} .
$$

We also define a "complexification" of R as

$$
R^{\mathbb{C}}=\exp \left(\mathfrak{r}^{\mathbb{C}}\right)=\exp \left(\operatorname{Ker} q^{\mathbb{C}}\right) \subset\left(\mathbb{C}^{\times}\right)^{m} .
$$

The group $R^{\mathbb{C}}$ acts locally free and holomorphically on $U_{\mathcal{K}}$. This action defines a holomorphic foliation \mathcal{F}_{Σ} on $U_{\mathcal{K}}$.
The holomorphic foliation \mathcal{F}_{Σ} is mapped by the quotient projection $U_{\mathcal{K}} \rightarrow U_{\mathcal{K}} / H$ to a holomorphic foliation $\mathcal{F}_{\mathfrak{h}}$ of $\mathcal{Z}_{\mathcal{K}} \cong U_{\mathcal{K}} / H$ by the orbits of $R^{\mathbb{C}} / H \cong R$.

Fibration over a toric variety

When $\mathfrak{r} \subset \mathbb{R}^{m}$ is rational with respect to the lattice of the torus T^{m} the group R becomes a subtorus of T^{m} and the complete fan Σ becomes rational. Then we have

$$
\mathcal{Z}_{\mathcal{K}} / R \cong V_{\Sigma} .
$$

The canonical foliation on $\mathcal{Z}_{\mathcal{K}}$ by orbits of R turns into a locally trivial fibration over a toric variety V_{Σ}.

Basic de Rham cohomology

For a smooth manifold M with de Rham differential d and a foliation \mathcal{F} on it we define a differential graded algebra of basic forms

$$
\left(\Omega_{\mathcal{F}}(M), d\right)=\left\{\omega \in \Omega(M): \iota_{X} \omega=L_{X} \omega=0 \quad \text { for any } X \in T \mathcal{F}\right\}
$$

If the foliation \mathcal{F} is induced by an action of a connected group G with Lie algebra \mathfrak{g} then this algebra may be defined as

$$
\left(\Omega_{\mathfrak{g}}(M), d\right)=\left\{\omega \in \Omega(M): \iota_{\xi} \omega=L_{\xi} \omega=0 \quad \text { for any } \xi \in \mathfrak{g}\right\}
$$

where X_{ξ} is a vector field induced by an action of ξ and $\iota_{\xi}=\iota_{X_{\xi}}, L_{\xi}=L_{X_{\xi}}$.

Basic Dolbeault cohomology

For $\bar{\partial}$ differential on complex manifold M we have a bigraded differential algebra of basic forms with values in \mathbb{C}

$$
\left(\Omega_{\mathcal{F}}^{*, *}(M ; \mathbb{C}), \bar{\partial}\right)
$$

Theorem (Ishida, K., Panov, 2018)

There is an isomorphism of algebras:

$$
H_{\mathcal{F}_{\mathfrak{h}}}^{*}\left(\mathcal{Z}_{\mathcal{K}}\right) \cong \mathbb{R}\left[v_{1}, \ldots, v_{m}\right] /\left(\mathcal{I}_{\mathcal{K}}+\mathcal{J}\right),
$$

where $\mathcal{I}_{\mathcal{K}}$ is the Stanley-Reisner ideal of simplicial complex \mathcal{K}, generated by monomials

$$
v_{i_{1}} \ldots v_{i_{k}}, \quad \text { with } \quad\left\{i_{1}, \ldots, i_{k}\right\} \notin \mathcal{K},
$$

and \mathcal{J} is the ideal generated by the linear forms

$$
\sum_{i=1}^{m}\left\langle\boldsymbol{u}, a_{i}\right\rangle v_{i}, \quad \boldsymbol{u} \in \mathfrak{g}^{\prime}=(\mathfrak{t} / \mathfrak{r})^{*}
$$

Definition

A holomorphic foliation (M, \mathcal{F}) is called transverse Kähler if it is homologically orientable and there exists a transverse 2-form $\omega_{\mathcal{F}}$ such that

- $d \omega_{\mathcal{F}}=0$;
- $\omega_{\mathcal{F}}(J X, J Y)=\omega(X, Y)$;
- $\omega_{\mathcal{F}}(J V, J V) \geqslant 0$.

Theorem (Ishida, 2015)

The canonical foliation $\mathcal{F}_{\mathfrak{h}}$ on $\mathcal{Z}_{\mathcal{K}}$ is transverse Kähler if and only if the fan Σ is polytopal.

Theorem (Ishida, 2018)

Let $\mathcal{F}_{\mathfrak{h}}$ be a transverse Kähler foliation. Than there is a Hodge decomposition

$$
H_{\mathcal{F}_{\mathfrak{h}}}^{r}\left(\mathcal{Z}_{\mathcal{K}} ; \mathbb{C}\right)=\bigoplus_{p+q=r} H_{\mathcal{F}_{\mathfrak{h}}}^{p, q}\left(\mathcal{Z}_{\mathcal{K}}\right)
$$

Moreover, there is an isomorphism of algebras:

$$
H_{\mathcal{F}_{\mathfrak{h}}}^{*, *}\left(\mathcal{Z}_{\mathcal{K}}\right) \cong \mathbb{R}\left[v_{1}, \ldots, v_{m}\right] /\left(\mathcal{I}_{\mathcal{K}}+J\right), \quad v_{i} \in H_{\mathcal{F}_{\mathfrak{h}}}^{1,1}\left(\mathcal{Z}_{\mathcal{K}}\right)
$$

Theorem (Lin, Yang, 2019)

Let G be a compact torus, and let (M, \mathcal{F}) be a transverse Kähler foliation. Suppose that there is a holomorphic Hamiltonian action of G on (M, \mathcal{F}). Let X_{G} be a fixed-leaf set of this action. Then $H^{p, q}(M, \mathcal{F})=0$ for $|p-q|>\operatorname{codim}\left(\mathcal{F} \mid x_{G}\right)$.

Remark

This generalizes Ishida's result since in case of a moment-angle manifold $\operatorname{codim}\left(\mathcal{F}_{\mathfrak{h}} \mid x_{T^{m}}\right)=0$ because a fixed-leaf set consists of finite number of leaves.

Theorem (K., Panov, 2019)

There is a Hodge decomposition

$$
H_{\mathcal{F}_{\mathfrak{h}}}^{r}\left(\mathcal{Z}_{\mathcal{K}} ; \mathbb{C}\right)=\bigoplus_{p+q=r} H_{\mathcal{F}_{\mathfrak{h}}}^{p, q}\left(\mathcal{Z}_{\mathcal{K}}\right)
$$

Moreover, there is an isomorphism of algebras:

$$
H_{\mathcal{F}_{\mathfrak{h}}}^{*, *}\left(\mathcal{Z}_{\mathcal{K}}\right) \cong \mathbb{R}\left[v_{1}, \ldots, v_{m}\right] /\left(I_{\mathcal{K}}+J\right), \quad v_{i} \in H_{\mathcal{F}_{\mathfrak{h}}}^{1,1}\left(\mathcal{Z}_{\mathcal{K}}\right)
$$

Corollary

The analogous result also holds for complex manifolds with maximal torus action, which also include LVMB-manifolds.

Remark

To show this general result we introduce a concept of Fujiki foliations and prove that canonical foliation is always of this type. Although this is weaker than being transverse Kähler it also provides the Hodge decomposition.

Definition

A holomorphic foliation (M, \mathcal{F}) on a compact manifold M is a Fujiki foliation if it is homologically orientable and there exists a holomorphic foliated surjective map

$$
f:\left(M^{\prime}, \mathcal{F}^{\prime}\right) \rightarrow(M, \mathcal{F})
$$

where $\left(M^{\prime}, \mathcal{F}^{\prime}\right)$ is a transverse Kähler foliation.

Lemma (3)

The map f as above induces an injection at the level of basic Dolbeault cohomology. As a consequence, if (M, \mathcal{F}) is a Fujiki foliation then its basic Dolbeault cohomology ring admits a Hodge decomposition

$$
H_{\mathcal{F}}^{r}(M ; \mathbb{C})=\bigoplus_{p+q=r} H_{\mathcal{F}}^{p, q}(M)
$$

We show that any canonical foliation $\left(\mathcal{Z}_{\mathcal{K}}, \mathcal{F}_{\mathfrak{h}}\right)$ is Fujiki. What is more, we construct a holomorphic foliated surjection

$$
f:\left(\mathcal{Z}_{\mathcal{K}^{\prime}}, \mathcal{F}_{\mathfrak{h}^{\prime}}\right) \rightarrow\left(\mathcal{Z}_{\mathcal{K}}, \mathcal{F}_{\mathfrak{h}}\right)
$$

where \mathcal{K}^{\prime} corresponds to a polytope.

Let $\tau \in \Sigma$ be a \boldsymbol{k}-dimensional cone $(\boldsymbol{k}>1)$ generated by a_{1}, \ldots, a_{k}, and denote the corresponding simplex by $I=\{1, \ldots, \boldsymbol{k}\} \in \mathcal{K}$. Let \mathcal{K}_{τ} be a stellar subdivision $\operatorname{st}(\mathcal{K}, I)$ of \mathcal{K} at I. We put Σ_{τ} to be a fan with generators $a_{1}, \ldots, a_{m}, a_{0}=a_{1}+\ldots+a_{k}$ such that the underlying simplicial complex is equal to \mathcal{K}_{τ}.

Consider a projection corresponding to the fan Σ_{τ} :

$$
q_{\tau}: \mathbb{R}^{m+1} \rightarrow \mathbb{R}^{n}, \quad e_{0} \mapsto a_{1}+\cdots+a_{k}, \quad e_{i} \mapsto a_{i}, i=1, \ldots, \boldsymbol{k}
$$

We have

$$
\operatorname{Ker} q_{\tau}=\left\langle e_{1}+\cdots+e_{k}-e_{0}, \operatorname{Ker} q\right\rangle
$$

Then $\mathcal{F}_{\Sigma_{\tau}}$ is a foliation on $U_{\mathcal{K}_{\tau}}$ by the orbits of $R_{\tau}^{\mathbb{C}}=\exp \left(\operatorname{Ker} \boldsymbol{q}_{\tau}^{\mathbb{C}}\right)$.

Construction

Consider a holomorphic surjective map

$$
f_{\tau}: \mathbb{C}^{m+1} \rightarrow \mathbb{C}^{m}, \quad\left(z_{0}, z_{1}, \ldots, z_{m}\right) \mapsto\left(z_{0} z_{1}, \ldots, z_{0} z_{k}, z_{k+1}, \ldots, z_{m}\right)
$$

It restricts to a holomorphic foliated surjective map

$$
f_{\tau}:\left(U_{\mathcal{K}_{\tau}}, \mathcal{F}_{\Sigma_{\tau}}\right) \rightarrow\left(U_{\mathcal{K}}, \mathcal{F}_{\Sigma}\right) .
$$

Remark

When Σ is a rational fan, both $R^{\mathbb{C}} \subset\left(\mathbb{C}^{\times}\right)^{m}$ and $R_{\tau}^{\mathbb{C}} \subset\left(\mathbb{C}^{\times}\right)^{m+1}$ are closed subgroups and the map $f_{\tau}: U_{\mathcal{K}_{\tau}} \rightarrow U_{\mathcal{K}}$ covers the standard blow-down map $V_{\Sigma_{\tau}} \rightarrow V_{\Sigma}$ of the quotient toric varieties $V_{\Sigma_{\tau}}=U\left(\mathcal{K}_{\tau}\right) / R_{\tau}^{\mathbb{C}}$ and $V_{\Sigma}=U_{\mathcal{K}} / R^{\mathbb{C}}$.

Lemma (Adiprasito and Izmestiev, 2014)

If \mathcal{K} is $P L$ sphere then there exists \boldsymbol{k}^{\prime} such that $\mathrm{bs}^{k^{\prime}} \mathcal{K}\left(\boldsymbol{k}^{\prime}\right.$-th barycentric subdivision) is polytopal.

The barycentric subdivision is obtained as the composition of stellar subdivisions at all simplices of \mathcal{K}

$$
\operatorname{bs}^{1} \mathcal{K}=\operatorname{st}\left(I_{1}, \operatorname{st}\left(I_{2}, \ldots, \operatorname{st}\left(I_{N}, \mathcal{K}\right) \ldots\right)\right)
$$

Therefore, we obtain a holomorphic foliated surjection

$$
f_{\mathrm{bs}}:\left(U_{\mathrm{bs}^{1} \mathcal{K}}, \mathcal{F}_{\mathrm{bs}^{1} \Sigma}\right) \rightarrow\left(U_{\mathcal{K}}, \mathcal{F}_{\Sigma}\right)
$$

as the composition $f_{\tau_{1}} \circ \cdots \circ f_{\tau_{N}}$, where τ_{j} is the cone corresponding to the simplex l_{j}.

Applying lemma and the composition of maps described above we obtain a foliated surjective map

$$
f:\left(U_{\mathcal{K}^{\prime}}, \mathcal{F}_{\Sigma^{\prime}}\right) \rightarrow\left(U_{\mathcal{K}}, \mathcal{F}_{\Sigma}\right)
$$

such that Σ^{\prime} is a polytopal fan.

Let $q^{\mathbb{C}}: \mathbb{C}^{m} \rightarrow \mathbb{C}^{n}$ and $q^{\mathbb{C}}: \mathbb{C}^{m^{\prime}} \rightarrow \mathbb{C}^{n}$ be the linear maps corresponding to Σ and Σ^{\prime} respectively.
We have

$$
\operatorname{Ker} q^{\mathbb{C}}=\left\langle V, \operatorname{Ker} q^{\mathbb{C}}\right\rangle
$$

where V is the subspace generated by the vectors $e_{j_{0}}-e_{j_{1}}-\cdots-e_{j_{s}}$ corresponding to all stellar subdivisions in the sequence.

We pick an arbitrary half-dimensional complex subspace $\mathfrak{h}_{0} \subset V$ such that its projection onto the real part $\mathbb{R}^{m^{\prime}}$ is injective. Then the vector space $\mathfrak{h}_{0} \oplus \mathfrak{h}$ provides a complex structure on $\mathcal{Z}_{\mathcal{K}^{\prime}}$.
It is now clear that we have the following commutative diagram

$$
\left.\begin{array}{rrr}
\left(U_{\mathcal{K}^{\prime}}, \mathcal{F}_{\Sigma^{\prime}}\right) & \stackrel{f}{\longrightarrow} & \left(U_{\mathcal{K}}, \mathcal{F}_{\Sigma}\right) \\
\downarrow & \downarrow \pi_{\Sigma} \\
\downarrow \pi_{\Sigma^{\prime}} & & \downarrow \\
\left(\mathcal{Z}_{\mathcal{K}^{\prime}}, \mathcal{F}_{\mathfrak{h o}} \oplus \mathfrak{h}\right.
\end{array}\right) \xrightarrow{f_{\mathcal{Z}}}\left(\begin{array}{l}
\left(\mathcal{Z}_{\mathcal{K}}, \mathcal{F}_{\mathfrak{h}}\right)
\end{array}\right.
$$

The map $f_{\mathcal{Z}}$ is a holomorphic and surjective. Now applying lemma 3, Ishida's theorem and the description of the basic de Rham cohomology of $\mathcal{Z}_{\mathcal{K}}$ we get the result.

Thank you for your attention！

