Combinatorics of torus actions of complexity one

Anton Ayzenberg ayzenberga@gmail.com on joint work with Mikiya Masuda

Faculty of Computer Science Higher School of Economics

November 18, 2019
Toric Topology 2019 in Okayama

Contents

- General assumptions
- Motivation: complexity 0 actions.
- Torus actions of complexity one in general position.
- Orbit spaces and sponges.
- Equivariantly formal actions.
- Combinatorics of sponges. Examples and pictures.
- Open problems and further work.

General assumptions

- $X=X^{2 n}$: smooth closed connected $2 n$-manifold;
- $T^{k} \circlearrowright X$: effective action of the compact torus;
- $0<\# X^{T}<\infty$: fixed points exist and they are isolated;
- $n-k \geqslant 0$ is called the complexity of the action.

Definition

Action is called equivariantly formal if $H^{\text {odd }}(X)=0$ (equivalently, $\left.H^{*}(X) \cong H_{T}^{*}(X) \otimes_{H^{*}(B T)} \mathbb{Z}\right)$.

Motivation: actions of complexity 0

Complexity 0: $T^{n} \circlearrowright X^{2 n}$.

- $P^{n}=X / T$ is a manifold with corners.
- (Masuda-Panov'06) X is equivariantly formal \Leftrightarrow all faces of P are acyclic: $\forall F \subseteq P: \mathscr{H}_{*}(F)=0$. For eq.formal actions we have:
- Even Betti numbers are expressed from combinatorics of P :

$$
\sum_{i=0}^{n} \beta_{2 i}(X) t^{2 i}=\sum_{i=0}^{n} f_{i} t^{2 n-2 i}\left(1-t^{2}\right)^{i}
$$

where f_{i} is the number of i-dimensional faces of P.

- $H_{T}^{*}(X) \cong \mathbb{Z}[P]$ and $H^{*}(X) \cong \mathbb{Z}[P] /(I . s . o . p$.$) , where \mathbb{Z}[P]$ is the face ring of P.

Plan of today's talk

Complexity 1: $T^{n-1} \circlearrowright X^{2 n}$.

- We consider only actions in general position.
- $Q^{n+1}=X / T$ is a closed topological manifold. But there is combinatorial structure: the sponge Z and its faces.
- (A.-Masuda'19) Criterion of equivariant formality in terms of the orbit space, faces, and sponge.
- Even Betti numbers are computed from the combinatorics of the sponge Z. Examples.
- Face algebra? This is a problem.

Actions of complexity one in general position

Definition

Let $\alpha_{x, 1}, \ldots, \alpha_{x, n} \in \operatorname{Hom}\left(T^{n-1}, T^{1}\right) \cong \mathbb{Z}^{n-1}$ be the weights of the tangent representation $\tau_{x} X$ for a fixed point $x \in X^{T}$. If, for any $x \in X^{T}$, any $n-1$ of $\left\{\alpha_{x, i}\right\}$ are linearly independent over \mathbb{Q}, we call the action T^{n-1} on X an action in general position.

Examples: $T^{3} \circlearrowright G_{4,2}, T^{2} \circlearrowright F_{3}, T^{3} \circlearrowright \mathbb{H} P^{2}, T^{2} \circlearrowright S^{6}=G_{2} / S U(3)$.
From now on, it will be assumed that all actions are of complexity one and in general position.

Orbit spaces and sponges

The orbit type filtration:

$$
X_{0} \subset X_{1} \subset \cdots \subset X_{n-2} \subset X_{n-1}=X
$$

X_{i} is the union of all $\leqslant i$-dimensional orbits.
The quotient filtration:

$$
Q_{0} \subset Q_{1} \subset \cdots \subset Q_{n-2} \subset Q_{n-1}=Q,
$$

$Q_{i}=X_{i} / T$.

Orbit spaces and sponges

Theorem (A.18)

If $T^{n-1} \circlearrowright X^{2 n}$ is in general position (+some weak assumptions), then
(1) $Q_{n-1}=Q=X / T$ is a closed topological manifold of dimension $n+1$;
(2) $\operatorname{dim} Q_{i}=i$ for all $i \leqslant n-2$;
(3) $Z:=Q_{n-2}$ is locally modelled by $(n-2)$-skeleton C_{n-2} of the fan of $\mathbb{C} P^{n-1}$.

Orbit spaces and sponges

Theorem (A.18)

If $T^{n-1} \circlearrowright X^{2 n}$ is in general position (+some weak assumptions), then
(1) $Q_{n-1}=Q=X / T$ is a closed topological manifold of dimension $n+1$;
(2) $\operatorname{dim} Q_{i}=i$ for all $i \leqslant n-2$;
© $Z:=Q_{n-2}$ is locally modelled by $(n-2)$-skeleton C_{n-2} of the fan of $\mathbb{C} P^{n-1}$.

Definition

The closure of a connected component of $Q_{i} \backslash Q_{i-1}$ is called a face of Q.

Definition

A space Z is called ($n-2$)-dimensional sponge, if it is locally modelled by C_{n-2}. Abstract sponges also have faces, defined topologically.

Orbit spaces and sponges

$\mathrm{n}=4$

Local structure of an ($n-2$)-dimensional sponge.

Equivariantly formal actions

Definition

An $(n-2)$-dimensional sponge Z is called acyclic if $(1) \tilde{H}_{*}(F)=0$ for any face F of Z; (2) $\tilde{H}_{i}(Z)=0$ for $i \leqslant n-3$ (i.e. Z is a Cohen-Macaulay space).

Theorem (A.-Masuda'19)

If $T^{n-1} \circlearrowright X^{2 n}$ is an equivariantly formal action in general position, then

- Q is a homology $(n+1)$-sphere: $\tilde{H}_{i}(Q)=0$ for $i \leqslant n$;
- The sponge $Z=Q_{n-2}$ is acyclic.

If, moreover, all stabilizers are connected, these two conditions imply equivariant formality (over \mathbb{Z}).

Combinatorics of sponges

Definition

Let Z be an acyclic sponge. Let f_{i} denote the number of its i-dimensional faces, and $b=\operatorname{rk} \tilde{H}_{n-2}(Z)$, the only nonzero Betti number of Z. The tuple $\left(\left(f_{0}, \ldots, f_{n-2}\right), b\right)$ is called the extended f-vector of Z.

Remark

$f_{0}-f_{1}+\cdots+(-1)^{n-2} f_{n-2}=1+(-1)^{n-2} b$ since both are equal to $\chi(Z)$. So far, b can be expressed from f_{i} 's.

Combinatorics of sponges

Definition

Let Z be an acyclic sponge. Let f_{i} denote the number of its i-dimensional faces, and $b=\operatorname{rk} \widetilde{H}_{n-2}(Z)$, the only nonzero Betti number of Z. The tuple $\left(\left(f_{0}, \ldots, f_{n-2}\right), b\right)$ is called the extended f-vector of Z.

Remark

$f_{0}-f_{1}+\cdots+(-1)^{n-2} f_{n-2}=1+(-1)^{n-2} b$ since both are equal to $\chi(Z)$. So far, b can be expressed from f_{i} 's.

Theorem (A.-Masuda'19)

If $\left(\left(f_{0}, \ldots, f_{n-2}\right), b\right)$ is the extended f -vector of the sponge of an equivariantly formal action $T^{n-1} \circlearrowright X^{2 n}$ in general position, then

$$
\sum_{i=0}^{n} \beta_{2 i}(X) t^{2 i}=\sum_{i=0}^{n-2} f_{i} t^{2 n-2 i}\left(1-t^{2}\right)^{i}+\left(1+b t^{2}\right)\left(1-t^{2}\right)^{n-1}
$$

Action of T^{3} on the Grassmann manifold $G_{4,2}$.

Buchstaber-Terzic'14: $G_{4,2} / T^{3} \cong S^{5}$. The sponge:

Extended f-vector $=((6,12,11), 4)$. We have
$\operatorname{Hilb}\left(H^{*}\left(G_{4,2}\right) ; t\right)=6 t^{8}+12 t^{6}\left(1-t^{2}\right)+11 t^{4}\left(1-t^{2}\right)^{2}+\left(1+4 t^{2}\right)\left(1-t^{2}\right)^{3}=$ $1+t^{2}+2 t^{4}+t^{6}+t^{8}$.

Action of T^{2} on the full flag manifold F_{3}.

Buchstaber-Terzic'14-18: $F_{3} / T^{2} \cong S^{4}$. The sponge:

Extended f-vector $=((6,9), 4)$. We have
$\operatorname{Hilb}\left(H^{*}\left(F_{3}\right) ; t\right)=6 t^{6}+9 t^{4}\left(1-t^{2}\right)+\left(1+4 t^{2}\right)\left(1-t^{2}\right)^{2}=1+2 t^{2}+2 t^{4}+t^{6}$.

Action of T^{3} on the quaternionic projective plane $\mathbb{H} P^{2}$.

Ayzenberg'19: $\mathbb{H} P^{2} / T^{3} \cong S^{5}$. The sponge of $\mathbb{H} P^{2}$ is the quotient of the sponge of $G_{4,2}$ by the antipodal involution.

Extended f-vector $=((3,6,7), 3)$. We have
$\operatorname{Hilb}\left(H^{*}\left(\mathbb{H} P^{2}\right) ; t\right)=3 t^{8}+6 t^{6}\left(1-t^{2}\right)+7 t^{4}\left(1-t^{2}\right)^{2}+\left(1+3 t^{2}\right)\left(1-t^{2}\right)^{3}=$

$$
1+t^{4}+t^{8}
$$

Problems and questions

Definition

Let us define the h-vector of an acyclic ($n-2$)-sponge by

$$
\sum_{i=0}^{n} h_{i} t^{2 i}=\sum_{i=0}^{n-2} f_{i} t^{2 n-2 i}\left(1-t^{2}\right)^{i}+\left(1+b t^{2}\right)\left(1-t^{2}\right)^{n-1}
$$

Problems and questions

Definition

Let us define the h-vector of an acyclic ($n-2$)-sponge by

$$
\sum_{i=0}^{n} h_{i} t^{2 i}=\sum_{i=0}^{n-2} f_{i} t^{2 n-2 i}\left(1-t^{2}\right)^{i}+\left(1+b t^{2}\right)\left(1-t^{2}\right)^{n-1}
$$

Problem 1

Prove "Dehn-Sommerville relations": $h_{i}=h_{n-i}$ for all acyclic sponges.

Problems and questions

Definition

Let us define the h-vector of an acyclic ($n-2$)-sponge by

$$
\sum_{i=0}^{n} h_{i} t^{2 i}=\sum_{i=0}^{n-2} f_{i} t^{2 n-2 i}\left(1-t^{2}\right)^{i}+\left(1+b t^{2}\right)\left(1-t^{2}\right)^{n-1}
$$

Problem 1

Prove "Dehn-Sommerville relations": $h_{i}=h_{n-i}$ for all acyclic sponges.

Problem 2

Prove "Lower bound theorem": $h_{i} \geqslant 0$ for all acyclic sponges.

Problems and questions

Problem 3 (implies Problems 1 and 2)

Invent "the face algebra" of an acyclic sponge. That is, for an acyclic sponge Z, define a graded algebra $\mathbb{k}[Z]$ with the properties:

- In general, $\operatorname{Hilb}(\mathbb{k}[Z] ; t)=\frac{h_{0}+h_{1} t^{2}+\cdots+h_{n} t^{2 n}}{\left(1-t^{2}\right)^{n}}$.
- In general, $\mathbb{k}[Z]$ is Gorenstein.
- $H_{T}^{*}(X ; \mathbb{k}) \cong \mathbb{k}[Z]$, where Z is the sponge of equivariantly formal complexity 1 action in general position on X.
- $H^{*}(X ; \mathbb{k}) \cong \mathbb{k}[Z] /($ I.s.o.p.).

Problems and questions

Problem 3 (implies Problems 1 and 2)

Invent "the face algebra" of an acyclic sponge. That is, for an acyclic sponge Z, define a graded algebra $\mathbb{k}[Z]$ with the properties:

- In general, $\operatorname{Hilb}(\mathbb{k}[Z] ; t)=\frac{h_{0}+h_{1} t^{2}+\cdots+h_{n} t^{2 n}}{\left(1-t^{2}\right)^{n}}$.
- In general, $\mathbb{k}[Z]$ is Gorenstein.
- $H_{T}^{*}(X ; \mathbb{k}) \cong \mathbb{k}[Z]$, where Z is the sponge of equivariantly formal complexity 1 action in general position on X.
- $H^{*}(X ; \mathbb{k}) \cong \mathbb{k}[Z] /($ I.s.o.p. $)$.

Problem 4

Analogues of everything for real torus actions of complexity one: $\mathbb{Z}_{2}^{n-1} \circlearrowright X^{n}$. What should be "equivariant formality" in this case?

Thank you slide

Thank you for listening!

References

A.Ayzenberg, Torus actions of complexity one and their local properties, Proc. of the Steklov Institute of Mathematics 302:1 (2018), 16-32, preprint: arXiv:1802.08828.

目 A.Ayzenberg, M. Masuda, Orbit spaces of equivariantly formal torus actions, preprint, to appear.
A. Ayzenberg, Torus action on quaternionic projective plane and related spaces, preprint arXiv:1903.03460.

R V. M. Buchstaber, S. Terzić, Toric topology of the complex Grassmann manifolds, arXiv:1802.06449.

- M. Masuda, T. Panov, On the cohomology of torus manifolds, Osaka J. Math. 43 (2006), 711-746 (preprint arXiv:math/0306100).

