Algebraic PL-Invariants and Cluster Algebras

Alastair Darby

The 43rd Symposium on Transformation Groups

Fudan University

Joint work with Zhi Lü

November 18, 2016

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Table of contents

Alastair Darby The 43rd Symposium on Transformation Groups Algebraic PL-Invariants and Cluster Algebras

・ 同 ト ・ ヨ ト ・ ヨ ト

PL-Manifolds

Suppose that K_1 and K_2 are simplicial complexes.

A *PL-map* $\varphi \colon K_1 \to K_2$ is a simplicial map from a subdivision of K_1 to a subdivision of K_2 . So K_1 and K_2 are *PL-homeomorphic* iff there exists a simplicial complex isomorphic to a subdivision of the both of them.

- 4 同 6 4 日 6 4 日 6

PL-Manifolds

Suppose that K_1 and K_2 are simplicial complexes.

A *PL-map* $\varphi \colon K_1 \to K_2$ is a simplicial map from a subdivision of K_1 to a subdivision of K_2 . So K_1 and K_2 are *PL-homeomorphic* iff there exists a simplicial complex isomorphic to a subdivision of the both of them.

A *PL-sphere* is a triangulated sphere which is PL-homeomorphic to the boundary of a simplex.

- 4 同 6 4 日 6 4 日 6

PL-Manifolds

Suppose that K_1 and K_2 are simplicial complexes.

A *PL-map* $\varphi \colon K_1 \to K_2$ is a simplicial map from a subdivision of K_1 to a subdivision of K_2 . So K_1 and K_2 are *PL-homeomorphic* iff there exists a simplicial complex isomorphic to a subdivision of the both of them.

A *PL-sphere* is a triangulated sphere which is PL-homeomorphic to the boundary of a simplex.

- In dim \leq 3, any triangulated sphere is PL.
- In dim = 4, the question is open.
- In dim \geq 5, there exist non–PL-sphere triangulations.

PL-Manifolds

All manifolds are assumed to be connected, closed and oriented.

Let $\alpha \in K$. Then $\mathsf{lk}_{K}\alpha = \{ \alpha' \in K \mid \alpha \cup \alpha' \in K, \ \alpha \cap \alpha' = \emptyset \}.$

<ロ> (日) (日) (日) (日) (日)

PL-Manifolds

All manifolds are assumed to be connected, closed and oriented.

Let
$$\alpha \in K$$
. Then $\mathsf{lk}_{K}\alpha = \{ \alpha' \in K \mid \alpha \cup \alpha' \in K, \ \alpha \cap \alpha' = \emptyset \}.$

Definition

A *PL-manifold* of dim *n* is a simplicial complex *K* of dim *n* such that $|k_K \alpha|$ is a PL-sphere of dim $n - |\alpha|$, for all non-empty $\alpha \in K$.

PL-Manifolds

All manifolds are assumed to be connected, closed and oriented.

Let
$$\alpha \in K$$
. Then $\mathsf{lk}_{K}\alpha = \{ \alpha' \in K \mid \alpha \cup \alpha' \in K, \ \alpha \cap \alpha' = \emptyset \}.$

Definition

A *PL-manifold* of dim *n* is a simplicial complex *K* of dim *n* such that $|k_K \alpha|$ is a PL-sphere of dim $n - |\alpha|$, for all non-empty $\alpha \in K$.

- In dim \leq 3, Smooth = PL = Top
- In dim = 4, Smooth = $PL \subset Top$
- In dim \geq 4, Smooth \subset PL \subset Top

PL-Spheres

A PL-sphere is not the same as a *PL-manifold homeomorphic to a sphere* but to the 'standard' sphere, i.e. the PL-structure is given by the boundary of a simplex. These notions coincide in dimensions other than 4.

PL-Spheres

A PL-sphere is not the same as a *PL-manifold homeomorphic to a sphere* but to the 'standard' sphere, i.e. the PL-structure is given by the boundary of a simplex. These notions coincide in dimensions other than 4.

Problem

Is a PL-structure on S^4 unique?

Alastair Darby The 43rd Symposium on Transformation Groups Algebraic PL-Invariants and Cluster Algebras

Bistellar Moves

Let K be a triangulated manifold of dim n.

・ロト ・回ト ・ヨト ・ヨト

Bistellar Moves

Let K be a triangulated manifold of dim n. Assume $\alpha \in K$ is an (n-j)-face such that $lk_K \alpha = \partial \beta$, for some $\beta \notin K$.

・ロト ・回ト ・ヨト ・ヨト

Bistellar Moves

Let K be a triangulated manifold of dim n. Assume $\alpha \in K$ is an (n-j)-face such that $lk_K \alpha = \partial \beta$, for some $\beta \notin K$. Then

$$\mathsf{bm}_{\alpha}\mathsf{K} = (\mathsf{K} \smallsetminus (\alpha \ast \partial\beta)) \cup (\partial\alpha \ast \beta)$$

is called a *bistellar j-move* on the *bistellar pair* (α, β) .

3

Bistellar Moves

Let K be a triangulated manifold of dim n. Assume $\alpha \in K$ is an (n-j)-face such that $lk_K \alpha = \partial \beta$, for some $\beta \notin K$. Then

$$\mathsf{bm}_{\alpha}\mathsf{K} = (\mathsf{K} \smallsetminus (\alpha \ast \partial\beta)) \cup (\partial\alpha \ast \beta)$$

is called a *bistellar j-move* on the *bistellar pair* (α, β) . A 0-move adds a vertex and an *n*-move deletes one. All other moves don't change the number of vertices.

Bistellar Moves

Let K be a triangulated manifold of dim n. Assume $\alpha \in K$ is an (n-j)-face such that $lk_K \alpha = \partial \beta$, for some $\beta \notin K$. Then

$$\mathsf{bm}_{\alpha}\mathsf{K} = (\mathsf{K}\smallsetminus (lpha*\partialeta)) \cup (\partiallpha*eta)$$

is called a *bistellar j-move* on the *bistellar pair* (α, β) . A 0-move adds a vertex and an *n*-move deletes one. All other moves don't change the number of vertices. Let $f = (f_0, f_1, \dots, f_n)$ be the *f*-vector of *K*. Then

Lemma

$$f(bm_{\alpha}K) = f(K) \Leftrightarrow n = 2j.$$

Bistellar Moves

Two simplicial complexes are *bistellarly equivalent* if one can be transformed into another by a finite sequence of bistellar moves.

- 4 同 2 4 日 2 4 日 2

Bistellar Moves

Two simplicial complexes are *bistellarly equivalent* if one can be transformed into another by a finite sequence of bistellar moves.

Theorem (Pachner '87)

Two PL-manifolds are bistellarly equivalent if and only if they are PL-homeomorphic.

(4月) (4日) (4日)

Cluster Algebras

Introduced by Fomin and Zelevinsky in the early 2000s as an attempt to create an algebraic framework for dual canonical bases and total positivity in semisimple groups.

Cluster Algebras

Introduced by Fomin and Zelevinsky in the early 2000s as an attempt to create an algebraic framework for dual canonical bases and total positivity in semisimple groups.

A *cluster algebra* A of rank *n* is a commutative ring (with unit and no zero divisors) equipped with:

- 4 同 6 4 日 6 4 日 6

Cluster Algebras

Introduced by Fomin and Zelevinsky in the early 2000s as an attempt to create an algebraic framework for dual canonical bases and total positivity in semisimple groups.

A *cluster algebra* A of rank *n* is a commutative ring (with unit and no zero divisors) equipped with:

• a distinguished family of generators X called *cluster variables*;

(4 同) (4 回) (4 回)

Cluster Algebras

Introduced by Fomin and Zelevinsky in the early 2000s as an attempt to create an algebraic framework for dual canonical bases and total positivity in semisimple groups.

A *cluster algebra* A of rank *n* is a commutative ring (with unit and no zero divisors) equipped with:

- a distinguished family of generators X called *cluster variables*;
- such that X is grouped into overlapping subsets called *clusters* that all have cardinality *n*.

Cluster Algebras

Introduced by Fomin and Zelevinsky in the early 2000s as an attempt to create an algebraic framework for dual canonical bases and total positivity in semisimple groups.

A *cluster algebra* A of rank *n* is a commutative ring (with unit and no zero divisors) equipped with:

- a distinguished family of generators X called *cluster variables*;
- such that X is grouped into overlapping subsets called *clusters* that all have cardinality *n*.

$$\mathbf{x}_1 = \{x_1^1, \dots, x_n^1\}, \quad \mathbf{x}_2 = \{x_1^2, \dots, x_n^2\}, \dots$$

 $X = \bigcup \mathbf{x}_i$ non-disjoint union

Exchange Property

The clusters have the following exchange property:

For every cluster ${\bf x}$ and $x\in {\bf x},$ there exists another cluster ${\bf x}'$ and $x'\in {\bf x}'$ such that

 $\mathbf{x}' = (\mathbf{x} \smallsetminus \{x\}) \cup \{x'\},$

Exchange Property

The clusters have the following exchange property:

For every cluster ${\bf x}$ and $x\in {\bf x},$ there exists another cluster ${\bf x}'$ and $x'\in {\bf x}'$ such that

$$\mathbf{x}' = (\mathbf{x} \smallsetminus \{x\}) \cup \{x'\},$$

where x and x' are related by the *exchange relation*

$$xx' = M + M',$$

イロト イポト イヨト イヨト

where M, M' are monomials without common divisors in the variables $\mathbf{x} \cap \mathbf{x}' = \mathbf{x} \smallsetminus \{x\}.$

Exchange Property

The clusters have the following exchange property:

For every cluster ${\bf x}$ and $x\in {\bf x},$ there exists another cluster ${\bf x}'$ and $x'\in {\bf x}'$ such that

$$\mathbf{x}' = (\mathbf{x} \smallsetminus \{x\}) \cup \{x'\},$$

where x and x' are related by the *exchange relation*

$$xx' = M + M',$$

where M, M' are monomials without common divisors in the variables $\mathbf{x} \cap \mathbf{x}' = \mathbf{x} \setminus \{x\}$.

Furthermore, any two clusters can be obtained from each other by a sequence of exchanges.

Rank 1

Let $\mathcal{A} = \mathbb{C}[SL_2] = \mathbb{C}[a, b, c, d]/(ad - bc - 1)$ be the coordiante ring, where we write an element of SL_2 as

$$\left(egin{array}{c} {a} {b} \\ {c} {d} \end{array}
ight), \quad {
m with} \,\, {\it ad}-{\it bc}=1.$$

・ロン ・四マ ・ヨマ ・ヨマ

Rank 1

Let $\mathcal{A} = \mathbb{C}[SL_2] = \mathbb{C}[a, b, c, d]/(ad - bc - 1)$ be the coordiante ring, where we write an element of SL_2 as

$$\left(egin{array}{c} a & b \\ c & d \end{array}
ight), \quad {
m with} \, \, ad-bc=1.$$

Consider *a*, *d* as cluster variables and *b*, *c* as scalers. Then we just have two clusters $\{a\}, \{d\}$ and \mathcal{A} is the algebra over $\mathbb{C}[b, c]$ generated by cluster variables *a*, *d* subject to the exchange relation

$$ad = 1 + bc$$
,

・ロン ・回と ・ヨン ・ヨン

Rank 1

Let $\mathcal{A} = \mathbb{C}[SL_2] = \mathbb{C}[a, b, c, d]/(ad - bc - 1)$ be the coordiante ring, where we write an element of SL_2 as

$$\left(egin{array}{c} a & b \\ c & d \end{array}
ight), \quad {
m with} \, \, ad-bc=1.$$

Consider *a*, *d* as cluster variables and *b*, *c* as scalers. Then we just have two clusters $\{a\}, \{d\}$ and \mathcal{A} is the algebra over $\mathbb{C}[b, c]$ generated by cluster variables *a*, *d* subject to the exchange relation

$$ad = 1 + bc$$
,

イロト イポト イヨト イヨト

which we can write as the ring $\mathbb{C}[b, c][a, a^{-1}]$ of Laurent polynomials.

Rank 2

Cluster algebras of rank 2, $\mathcal{A}(b, c)$, depend only two positive integers $b, c \in \mathbb{Z}_{>0}$.

・ロト ・日本 ・モト ・モト

Rank 2

Cluster algebras of rank 2, $\mathcal{A}(b, c)$, depend only two positive integers $b, c \in \mathbb{Z}_{>0}$.

The cluster variables are elements x_m , $m \in \mathbb{Z}$, defined recursively by the exchange relations:

$$x_{m-1}x_{m+1} = egin{cases} x_m^b+1, & ext{if } m ext{ is odd;} \ x_m^c+1, & ext{if } m ext{ is even.} \end{cases}$$

Rank 2

Cluster algebras of rank 2, $\mathcal{A}(b, c)$, depend only two positive integers $b, c \in \mathbb{Z}_{>0}$.

The cluster variables are elements x_m , $m \in \mathbb{Z}$, defined recursively by the exchange relations:

$$x_{m-1}x_{m+1} = egin{cases} x_m^b+1, & ext{if } m ext{ is odd;} \ x_m^c+1, & ext{if } m ext{ is even.} \end{cases}$$

イロト イポト イヨト イヨト

Each x_m is then a rational function of x_1 and x_2 .

Rank 2

So $\mathcal{A}(b,c)$ is the subring generated by x_m , $m \in \mathbb{Z}$, inside the *field* of rational functions

$$\mathbb{Q}(x_1, x_2) := \{ rac{f(x_1, x_2)}{g(x_1. x_2)} \mid f, g ext{ are polynomials such that } g
eq 0 \}.$$

・ロト ・回ト ・ヨト ・ヨト

Rank 2

So $\mathcal{A}(b,c)$ is the subring generated by x_m , $m \in \mathbb{Z}$, inside the *field* of rational functions

$$\mathbb{Q}(x_1, x_2) := \{ rac{f(x_1, x_2)}{g(x_1. x_2)} \mid f, g ext{ are polynomials such that } g
eq 0 \}.$$

The clusters are pairs $\{x_m, x_{m+1}\}$, $m \in \mathbb{Z}$.

イロト イヨト イヨト イヨト

Rank 2

So $\mathcal{A}(b, c)$ is the subring generated by x_m , $m \in \mathbb{Z}$, inside the *field* of rational functions

$$\mathbb{Q}(x_1,x_2):=\{rac{f(x_1,x_2)}{g(x_1.x_2)}\mid f,g ext{ are polynomials such that }g
eq 0\}.$$

The clusters are pairs $\{x_m, x_{m+1}\}$, $m \in \mathbb{Z}$.

Starting with $\{x_1, x_2\}$ we can reach any other cluster by a series of exchanges

$$\cdots \longleftrightarrow \{x_0, x_1\} \longleftrightarrow \{x_1, x_2\} \longleftrightarrow \{x_2, x_3\} \longleftrightarrow \cdots$$

イロン イヨン イヨン イヨン

Rank n

For rank *n* the construction is similar.

・ロト ・回ト ・ヨト ・ヨト

3

Rank n

For rank *n* the construction is similar.

Each cluster $\mathbf{x} = \{x_1, \dots, x_n\}$ is a collection of (algebraically independent) elements of some ambient field.

イロン イヨン イヨン イヨン

э

Rank n

For rank *n* the construction is similar.

Each cluster $\mathbf{x} = \{x_1, \dots, x_n\}$ is a collection of (algebraically independent) elements of some ambient field.

Each cluster variable x_k can be exchanged from **x** to form a new cluster $\mathbf{x}' = (\mathbf{x} \setminus \{x_k\}) \cup \{x'_k\}$,

イロン イヨン イヨン イヨン

Rank *n*

For rank n the construction is similar.

Each cluster $\mathbf{x} = \{x_1, \dots, x_n\}$ is a collection of (algebraically independent) elements of some ambient field.

Each cluster variable x_k can be exchanged from **x** to form a new cluster $\mathbf{x}' = (\mathbf{x} \setminus \{x_k\}) \cup \{x'_k\}$, where x_k and x'_k are related by an *exchange relation*

$$\mathbf{x}_k \mathbf{x}'_k = \mathbf{M} + \mathbf{M}',$$

イロト イポト イヨト イヨト

where M, M' are disjoint monomials in the variables $\mathbf{x} \cap \mathbf{x}'$.

Rank n

The exponents in M and M' are encoded in an $(n \times n)$ -integer matrix $B = (b_{ij})$ (usually skew-symmetric) called the *exchange* matrix.

イロト イヨト イヨト イヨト

3

Rank *n*

The exponents in M and M' are encoded in an $(n \times n)$ -integer matrix $B = (b_{ij})$ (usually skew-symmetric) called the *exchange* matrix.

The exchange relations look like

$$x_k x'_k = \prod_i x_i^{[b_{ik}]_+} + \prod_i x_i^{[-b_{ik}]_+},$$

イロト イポト イヨト イヨト

where $[b]_{+} = \max\{b, 0\}$.

Rank *n*

The exponents in M and M' are encoded in an $(n \times n)$ -integer matrix $B = (b_{ij})$ (usually skew-symmetric) called the *exchange* matrix.

The exchange relations look like

$$x_k x'_k = \prod_i x_i^{[b_{ik}]_+} + \prod_i x_i^{[-b_{ik}]_+},$$

where $[b]_{+} = \max\{b, 0\}.$

A pair (\mathbf{x}, B) is called a *seed*, which can be realised as a *quiver*.

イロン イヨン イヨン イヨン

Rank n

For each index k we can extend $\mathbf{x} \mapsto \mathbf{x}'$ to

$$(\mathbf{x},B)\longmapsto (\mathbf{x}',B')$$

・ロト ・日本 ・モト ・モト

3

Rank n

For each index k we can extend $\mathbf{x} \mapsto \mathbf{x}'$ to

$$(\mathbf{x},B)\longmapsto (\mathbf{x}',B')$$

called a seed mutation in direction k, where we use the matrix mutation $\mu_k \colon B \to B' = (b'_{ij})$ given by

$$b'_{ij} = egin{cases} -b_{ij}, & i = k ext{ or } j = k; \ b_{ij} + [b_{ik}]_+ [b_{kj}]_+ - [-b_{ik}]_+ [-b_{kj}]_+, & ext{ otherwise.} \end{cases}$$

・ロン ・回と ・ヨン ・ヨン

2

Rank n

For each index k we can extend $\mathbf{x} \mapsto \mathbf{x}'$ to

$$(\mathbf{x},B)\longmapsto (\mathbf{x}',B')$$

called a seed mutation in direction k, where we use the matrix mutation $\mu_k \colon B \to B' = (b'_{ij})$ given by

$$b'_{ij} = \begin{cases} -b_{ij}, & i = k \text{ or } j = k; \\ b_{ij} + [b_{ik}]_+ [b_{kj}]_+ - [-b_{ik}]_+ [-b_{kj}]_+, & \text{otherwise.} \end{cases}$$

・ロト ・回ト ・ヨト ・ヨト

3

Note that $\mu_k(\mu_k(B)) = B$.

Rank n

Definition

The cluster algebra is then defined as the subring of $\mathbb{Q}(x_1, \ldots, x_n)$ generated by all cluster variables,

イロン イヨン イヨン イヨン

æ

Rank n

Definition

The cluster algebra is then defined as the subring of $\mathbb{Q}(x_1, \ldots, x_n)$ generated by all cluster variables, i.e. the union of all clusters obtained from the *initial cluster* **x** by iterating seeds in all directions.

Rank n

Definition

The cluster algebra is then defined as the subring of $\mathbb{Q}(x_1, \ldots, x_n)$ generated by all cluster variables, i.e. the union of all clusters obtained from the *initial cluster* **x** by iterating seeds in all directions.

A cluster algebra is said to be of *finite type* if it has only a finite number of seeds.

Rank n

Definition

The cluster algebra is then defined as the subring of $\mathbb{Q}(x_1, \ldots, x_n)$ generated by all cluster variables, i.e. the union of all clusters obtained from the *initial cluster* **x** by iterating seeds in all directions.

A cluster algebra is said to be of *finite type* if it has only a finite number of seeds.

Theorem (Fomin, Zelevinsky 2003)

Cluster algebras of finite type can be classified in terms of the Dynkin diagrams of finite-dimensional simple Lie algebras.

The Laurent Phenomenon

• One of the main consequences of the definition of matrix mutations.

イロン イヨン イヨン イヨン

æ

The Laurent Phenomenon

- One of the main consequences of the definition of matrix mutations.
- Every cluster variable (a rational function in the elements of a given cluster) is a Laurent polynomial with integer coefficients.

- 4 同 6 4 日 6 4 日 6

The Laurent Phenomenon

- One of the main consequences of the definition of matrix mutations.
- Every cluster variable (a rational function in the elements of a given cluster) is a Laurent polynomial with integer coefficients.
- Surprising since every cluster variable appears as the denominator of the expression used for producing a new one.

- 4 同 6 4 日 6 4 日 6

The Laurent Phenomenon

- One of the main consequences of the definition of matrix mutations.
- Every cluster variable (a rational function in the elements of a given cluster) is a Laurent polynomial with integer coefficients.
- Surprising since every cluster variable appears as the denominator of the expression used for producing a new one.
- Conjecture: All coefficients in these Laurent polynomials are positive.

Triangulated Surfaces

Suppose we have a pair (S, M) where S is a closed oriented connected surface and M is a set of marked points on S with |M| = m. We want to consider all triangulations K of S with m vertices as the marked points.

Triangulated Surfaces

Suppose we have a pair (S, M) where S is a closed oriented connected surface and M is a set of marked points on S with |M| = m. We want to consider all triangulations K of S with m vertices as the marked points.

Consider the category of PL-surfaces K with a fixed number of vertices.

Then

 $K \cong K' \iff$ related by a finite sequence of bistellar 1-moves.

Triangulated Surfaces

Suppose we have a pair (S, M) where S is a closed oriented connected surface and M is a set of marked points on S with |M| = m. We want to consider all triangulations K of S with m vertices as the marked points.

Consider the category of PL-surfaces K with a fixed number of vertices.

Then

 $K \cong K' \iff$ related by a finite sequence of bistellar 1-moves.

イロト イポト イヨト イヨト

Given (S, M) we can form a cluster algebra $\mathcal{A}(S, M)$.

Triangulated Surfaces

The set of cluster variables X is the set of potential edges of K. Every triangulation K will have

$$n=6g+3m-6$$

edges, where g is the genus of S. These will form our clusters.

- 4 同 2 4 日 2 4 日 2

1

Triangulated Surfaces

The set of cluster variables X is the set of potential edges of K. Every triangulation K will have

$$n=6g+3m-6$$

edges, where g is the genus of S. These will form our clusters.

For every triangulation K we form the $(n \times n)$ -exchange matrix B as follows:

$$B(K) = B = \sum_{\Delta \in S} B^{\Delta},$$

where Δ is a 2-simplex of *S*.

Triangulated Surfaces

Using the following matrix mutation $B' = \mu_k(B)$ in direction k:

$$b'_{ij} = egin{cases} -b_{ij}, & ext{if } i = k ext{ of } j = k; \ b_{ij} + [b_{ik}]_+ [b_{kj}]_+ - [-b_{ik}]_+ [-b_{kj}]_+, & ext{otherwise}, \end{cases}$$

we obtain the following theorem:

・ロン ・回と ・ヨン ・ヨン

æ

Triangulated Surfaces

Using the following matrix mutation $B' = \mu_k(B)$ in direction k:

$$b'_{ij} = egin{cases} -b_{ij}, & ext{if } i = k ext{ of } j = k; \ b_{ij} + [b_{ik}]_+ [b_{kj}]_+ - [-b_{ik}]_+ [-b_{kj}]_+, & ext{otherwise}, \end{cases}$$

we obtain the following theorem:

Theorem (Fomin, Shapiro, Thurston '08)

Suppose K' is obtained from K by a 1-move on the edge labelled k. Then $\mu_k(B(K)) = B(K')$. Therefore, $\mathcal{A}(K) \cong \mathcal{A}(K')$ as cluster algebras of rank 6g + 3m - 6.

イロン イヨン イヨン イヨン

Triangulated Surfaces

For each surface S we can now form a family of cluster algebras \mathcal{A}_m , where m corresponds to the number of vertices in the triangulations of S.

イロト イヨト イヨト イヨト

э

Triangulated Surfaces

For each surface S we can now form a family of cluster algebras A_m , where m corresponds to the number of vertices in the triangulations of S.

We have a canonical inclusion $\mathcal{A}_m \hookrightarrow \mathcal{A}_{m+1}$ induced by performing a zero move on a 2-simplex.

Triangulated Surfaces

For each surface S we can now form a family of cluster algebras A_m , where m corresponds to the number of vertices in the triangulations of S.

We have a canonical inclusion $\mathcal{A}_m \hookrightarrow \mathcal{A}_{m+1}$ induced by performing a zero move on a 2-simplex.

This forms a direct system and we can define

$$\mathcal{A}=\lim_m\mathcal{A}_m.$$

Triangulated Surfaces

For each surface S we can now form a family of cluster algebras A_m , where m corresponds to the number of vertices in the triangulations of S.

We have a canonical inclusion $\mathcal{A}_m \hookrightarrow \mathcal{A}_{m+1}$ induced by performing a zero move on a 2-simplex. This forms a direct system and we can define

This forms a direct system and we can define

$$\mathcal{A}=\lim_m\mathcal{A}_m.$$

So to compare two triangulations with a different number of vertices we can embed their cluster algebras into ones of higher rank.

Pair Ordering

We now generalise the exchange matrix B to higher-dimensional triangulated manifolds. Consider a simplicial complex K on the vertex set [m].

- - 4 回 ト - 4 回 ト

3

Pair Ordering

We now generalise the exchange matrix B to higher-dimensional triangulated manifolds. Consider a simplicial complex K on the vertex set [m]. Using the ordering $1 < \cdots < m$ on the vertices we impose the *lexographical ordering* < on $2^{[m]}$, e.g. when m = 3 we have

$$\emptyset < \{1\} < \{2\} < \{3\} < \{1,2\} < \{1,3\} < \{2,3\} < \{1,2,3\}.$$

(人間) (人) (人) (人)

Pair Ordering

We now generalise the exchange matrix B to higher-dimensional triangulated manifolds. Consider a simplicial complex K on the vertex set [m]. Using the ordering $1 < \cdots < m$ on the vertices we impose the *lexographical ordering* < on $2^{[m]}$, e.g. when m = 3 we have

$$\emptyset < \{1\} < \{2\} < \{3\} < \{1,2\} < \{1,3\} < \{2,3\} < \{1,2,3\}.$$

Let $\alpha = (a_0, a_1, \dots, a_n)$ be an oriented *n*-simplex. Then the standard boundary operator is defined as

$$\partial(a_0,a_1,\ldots,a_n)=\sum_{j=0}^n(-1)^{j+1}(a_0,\ldots,\hat{a}_j,\ldots,a_n).$$

Pair Ordering

We generalise this as follows: for any $0 \le k \le n$ define

$$\partial^{(k)}(a_0,a_1,\ldots,a_n)=\sum_{1\leq j_1<\cdots< j_k\leq n}(-1)^{j_1+\cdots+j_k+1}(\ldots,\hat{a_{j_1}},\ldots,\hat{a_{j_k}},\ldots).$$

Obviously, we have $\partial^{(1)} = \partial$.

イロン イヨン イヨン イヨン

æ

Pair Ordering

We generalise this as follows: for any $0 \le k \le n$ define

$$\partial^{(k)}(a_0, a_1, \dots, a_n) = \sum_{1 \le j_1 < \dots < j_k \le n} (-1)^{j_1 + \dots + j_k + 1} (\dots, \hat{a_{j_1}}, \dots, \hat{a_{j_k}}, \dots).$$

・ロン ・回と ・ヨン ・ヨン

3

Obviously, we have $\partial^{(1)} = \partial$. We now define a *pair ordering* \prec on all (n - 1)-faces of a simplex $\alpha = (a_0, a_1, \dots, a_n)$.

Pair Ordering

We generalise this as follows: for any $0 \le k \le n$ define

$$\partial^{(k)}(a_0, a_1, \dots, a_n) = \sum_{1 \le j_1 < \dots < j_k \le n} (-1)^{j_1 + \dots + j_k + 1} (\dots, \hat{a_{j_1}}, \dots, \hat{a_{j_k}}, \dots).$$

Obviously, we have $\partial^{(1)} = \partial$. We now define a *pair ordering* \prec on all (n - 1)-faces of a simplex $\alpha = (a_0, a_1, \ldots, a_n)$. Take two facets f and g of α such that f < g. Define

$$f \setminus g = (f \cup g) \setminus (f \cap g) = \alpha \setminus (f \cap g).$$

Note that dim $f \setminus g = 1$. Consider the coefficient c_{fg} of $f \setminus g$ in $\partial^{(n-1)}\alpha$.

Pair Ordering

Set

$$f \prec g$$
 if $c_{fg} = +1$
 $g \prec f$ if $c_{fg} = -1$.

Alastair Darby The 43rd Symposium on Transformation Groups Algebraic PL-Invariants and Cluster Algebras

・ロト ・回ト ・ヨト ・ヨト

2

Pair Ordering

Set

$$f \prec g$$
 if $c_{fg} = +1$
 $g \prec f$ if $c_{fg} = -1$.

Example

Take a = (1, 2, 3). Then the one faces have the lexographical ordering (12) < (13) < (23). By considering

$$\partial(1,2,3) = (23) - (13) + (12)$$

we obtain the pair ordering for all one faces as follows:

$$(12) \prec (13); (23) \prec (13); (13) \prec (23).$$

Exchange Matrix

Consider a triangulated manifold K of dimension n. Let \mathcal{F} denote the set of (n-1)-faces of K.

イロン イヨン イヨン イヨン

æ

Exchange Matrix

Consider a triangulated manifold K of dimension n. Let \mathcal{F} denote the set of (n-1)-faces of K. For every n-simplex α in K we define the skew-symmetric matrix $B^{\alpha}(K) = (b_{fg}^{\alpha})_{f,g\in\mathcal{F}}$ of size $f_{n-1}(K)$ by setting

$$b^lpha_{fg} = egin{cases} +1, & ext{if } f \prec g; \ -1, & ext{if } g \prec f; \ 0, & ext{otherwise}, \end{cases}$$

for $f, g \subset \alpha$.

- 4 同 6 4 日 6 4 日 6

Exchange Matrix

Consider a triangulated manifold K of dimension n. Let \mathcal{F} denote the set of (n-1)-faces of K. For every n-simplex α in K we define the skew-symmetric matrix $B^{\alpha}(K) = (b_{fg}^{\alpha})_{f,g\in\mathcal{F}}$ of size $f_{n-1}(K)$ by setting

$$b^lpha_{fg} = egin{cases} +1, & ext{if } f \prec g; \ -1, & ext{if } g \prec f; \ 0, & ext{otherwise}, \end{cases}$$

for $f, g \subset \alpha$. Then we define

$$B(K) = \sum_{\alpha \in \mathcal{F}} B^{\alpha} K.$$

Note that B(K) is skew-symmetric with entries belonging to $\{-1, 0, +1\}$.

Alastair Darby The 43rd Symposium on Transformation Groups Algebraic PL-Invariants and Cluster Algebras

Matrix Mutations

We now restrict to the case of 2j = n, i.e. bisteller *n*-moves on a manifold of dimension 2n.

Question

How does B(K) change into $B(\operatorname{bm}_{\alpha} K)$? We only need to consider the local structure around α .

・ロン ・回と ・ヨン・

Matrix Mutations

We now restrict to the case of 2j = n, i.e. bisteller *n*-moves on a manifold of dimension 2n.

Question

How does B(K) change into $B(bm_{\alpha}K)$? We only need to consider the local structure around α .

WLOG assume that $\alpha = (1, \dots, j+1)$ and $\beta = (j+2, \dots, 2j+2)$. Set

$$F_i = (-1)^i (1, \ldots, j+1, j+2, \ldots, 2j+3 - i, \ldots, 2j+2),$$

・ロト ・回ト ・ヨト ・ヨト

for i = 1, ..., j + 1.

Matrix Mutations

We now restrict to the case of 2j = n, i.e. bisteller *n*-moves on a manifold of dimension 2n.

Question

How does B(K) change into $B(bm_{\alpha}K)$? We only need to consider the local structure around α .

WLOG assume that $\alpha = (1, \dots, j+1)$ and $\beta = (j+2, \dots, 2j+2)$. Set

$$F_i = (-1)^i (1, \ldots, j+1, j+2, \ldots, 2j+3 - i, \ldots, 2j+2),$$

for $i = 1, \ldots, j + 1$. Note $\alpha = \bigcap F_i$. Let $\Lambda(F) = \bigcup F_i$.

Matrix Mutations

Then

$$\operatorname{bm}_{\alpha}\Lambda(F)=\Lambda(H),$$

where

$$H_i=(-1)^i(1,\ldots,\hat{i},\ldots,j+1,\ldots,2j+2)$$

for $i = 1, \ldots, j + 1$, $\beta = \bigcap H_i$ and $\Lambda(H) = \bigcup H_i$. Note $\beta = \bigcap H_i$.

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Matrix Mutations

Then

$$\operatorname{bm}_{\alpha}\Lambda(F)=\Lambda(H),$$

where

$$H_i = (-1)^i (1, \ldots, \hat{i}, \ldots, j+1, \ldots, 2j+2)$$

for $i = 1, \ldots, j + 1$, $\beta = \bigcap H_i$ and $\Lambda(H) = \bigcup H_i$. Note $\beta = \bigcap H_i$.

Lemma

3

For any n-face γ not in $\Lambda(F)$ we have that $b_{fg} = b_{fg}^{bm_{\alpha}}$, for $f, g \in \mathcal{F}(\gamma)$. Furthermore,

$$\sum_{\in \mathcal{F}(\mathcal{K})\setminus \mathcal{F}} B^{\gamma}(\mathcal{K}) = \sum_{\gamma\in \mathcal{F}(bm_{\alpha}\mathcal{K})\setminus \mathcal{H}} B^{\gamma}(bm_{\alpha}\mathcal{K}).$$

イロト イポト イヨト イヨト

э

Matrix Mutations

Let σ be a permutation on [2j+2] such that $\sigma(\alpha) = \beta$. Then σ induces a combinatorial equivalence between $\Lambda(F)$ and $\Lambda(H)$.

・ロト ・回ト ・ヨト ・ヨト

æ

Matrix Mutations

Let σ be a permutation on [2j + 2] such that $\sigma(\alpha) = \beta$. Then σ induces a combinatorial equivalence between $\Lambda(F)$ and $\Lambda(H)$. We consider the particular involution

$$\sigma = \begin{pmatrix} 1 & \cdots & j+1 & j+2 & \cdots & 2j+2\\ 2j+2 & \cdots & j+2 & j+1 & \cdots & 1 \end{pmatrix}$$

イロト イポト イヨト イヨト

3

Matrix Mutations

Let σ be a permutation on [2j + 2] such that $\sigma(\alpha) = \beta$. Then σ induces a combinatorial equivalence between $\Lambda(F)$ and $\Lambda(H)$. We consider the particular involution

$$\sigma = \begin{pmatrix} 1 & \cdots & j+1 & j+2 & \cdots & 2j+2\\ 2j+2 & \cdots & j+2 & j+1 & \cdots & 1 \end{pmatrix}$$

We define a matrix mutation $\mu_{\sigma}(B) = B'$ with respect to σ by setting

$$b'_{fg} = egin{cases} b_{fg}, & ext{if } f,g \notin \Lambda(F); \ -b_{\sigma(f)\sigma(g)}, & ext{if } f,g \in \Lambda(F). \end{cases}$$

イロト イポト イヨト イヨト

Matrix Mutations

Let σ be a permutation on [2j + 2] such that $\sigma(\alpha) = \beta$. Then σ induces a combinatorial equivalence between $\Lambda(F)$ and $\Lambda(H)$. We consider the particular involution

$$\sigma = \begin{pmatrix} 1 & \cdots & j+1 & j+2 & \cdots & 2j+2\\ 2j+2 & \cdots & j+2 & j+1 & \cdots & 1 \end{pmatrix}$$

We define a matrix mutation $\mu_{\sigma}(B) = B'$ with respect to σ by setting

$$b'_{fg} = \begin{cases} b_{fg}, & \text{if } f,g \notin \Lambda(F); \\ -b_{\sigma(f)\sigma(g)}, & \text{if } f,g \in \Lambda(F). \end{cases}$$

Proposition

$$\mu_{\sigma}(B(K)) = B(\mathsf{bm}_{\alpha}(K)).$$

Alastair Darby The 43rd Symposium on Transformation Groups Algebraic PL-Invariants and Cluster Algebras

Cluster Algebra

Suppose we have a triangulated manifold K. A bistellar cluster

$$\chi(K) = \{x_f \mid f \in \mathcal{F}(K)\}$$

is a set of abstract variables associated to K. Denote by $\mathbb{Q}(\chi(K))$ the field of rational functions over $\chi(K)$.

イロト イポト イヨト イヨト

Cluster Algebra

Suppose we have a triangulated manifold K. A bistellar cluster

$$\chi(K) = \{x_f \mid f \in \mathcal{F}(K)\}$$

is a set of abstract variables associated to K. Denote by $\mathbb{Q}(\chi(K))$ the field of rational functions over $\chi(K)$.

Associated to K we get a *bistellar seed* $(\chi(K), B(K))$, where B(K) is the exchange matrix associated to K.

(人間) (人) (人) (人)

Cluster Algebra

Suppose we have a triangulated manifold K. A bistellar cluster

$$\chi(K) = \{x_f \mid f \in \mathcal{F}(K)\}$$

is a set of abstract variables associated to K. Denote by $\mathbb{Q}(\chi(K))$ the field of rational functions over $\chi(K)$.

Associated to K we get a *bistellar seed* $(\chi(K), B(K))$, where B(K) is the exchange matrix associated to K.

We then form a cluster algebra $\mathcal{A}(K)$ by performing *bistellar seed mutations* in all possible directions.

イロン イヨン イヨン イヨン

Cluster Algebra

The bistellar exchange relations are of the form

$$x_f x_{\sigma(f)} = \prod_{g \in \Lambda(F)} x_g^{[b_f g]_+} + \prod_{g \in \Lambda(F)} x_g^{[-b_{fg}]_+}.$$

イロン イヨン イヨン イヨン

æ

Cluster Algebra

The bistellar exchange relations are of the form

$$x_f x_{\sigma(f)} = \prod_{g \in \Lambda(F)} x_g^{[b_f g]_+} + \prod_{g \in \Lambda(F)} x_g^{[-b_{fg}]_+}$$

We then have that

Theorem

The associated cluster algebra $\mathcal{A}(K)$ to a PL-manifold is a PL-invariant.

イロト イヨト イヨト イヨト

Higher Dimensional Manifolds

• This theory also works for bistellar moves that are not half-dimensional.

・ロト ・回ト ・ヨト ・ヨト

æ

Higher Dimensional Manifolds

- This theory also works for bistellar moves that are not half-dimensional.
- One problem is that, these moves change the number of codimension 1 faces of *K*.

イロト イヨト イヨト イヨト

Higher Dimensional Manifolds

- This theory also works for bistellar moves that are not half-dimensional.
- One problem is that, these moves change the number of codimension 1 faces of *K*.
- Our solution to these problems is to define an algebra similar to a cluster algebra with some differences.

イロト イヨト イヨト イヨト

Higher Dimensional Manifolds

- This theory also works for bistellar moves that are not half-dimensional.
- One problem is that, these moves change the number of codimension 1 faces of *K*.
- Our solution to these problems is to define an algebra similar to a cluster algebra with some differences.
- We have defined generalised matrix mutations for performing bistellar moves on arbitrary dimensional faces.

<ロ> (日) (日) (日) (日) (日)

Higher Dimensional Manifolds

- This theory also works for bistellar moves that are not half-dimensional.
- One problem is that, these moves change the number of codimension 1 faces of *K*.
- Our solution to these problems is to define an algebra similar to a cluster algebra with some differences.
- We have defined generalised matrix mutations for performing bistellar moves on arbitrary dimensional faces.
- So now our goal is to fit this into some algebraic framework similar to cluster algebras to give (possibly complete) invariants of PL-manifolds.

・ロン ・回と ・ヨン ・ヨン

Thank you!

Alastair Darby The 43rd Symposium on Transformation Groups Algebraic PL-Invariants and Cluster Algebras

・ロト ・回ト ・モト ・モト

æ