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The goal

The goal of the lecture is to present constructions of smooth
actions of compact Lie groups G on complex projective spaces
CPn, such that the manifold

F (G � CPn) = {x ∈ CPn : g · x = x for all g ∈ G}

consisting of points fixed under the action of G on CPn contains
a connected component M admitting some geometric structure
while missing another one. We shall see how to construct smooth
actions of G on CPn, in such a way that

M is stable almost complex and M is not almost complex,
M is almost complex and M is not homotopically symplectic,
M is homotopically symplectic and M is not symplectic.

Almost complex actions, homotopically symplectic actions, and
symplectic actions of compact Lie groups G on CPn form three
different classes of transformation groups.
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Almost complex and stable almost complex manifolds

By an almost complex manifold (M2n, J) we mean a smooth
manifold M2n with a vector bundle map J : T (M)→ T (M)
over idM such that J2 = −idT (M). In other words, the tangent
bundle T (M) admists the structure of a complex vector bundle.

Existence of an almost complex structure J on M is equivalent to
existence of a differential 2-form ω on M which is non-degenerate
at each point x ∈ M, i.e., for any non-zero vector v ∈ Tx(M),
the 1-form {λx : Tx(M)→ R}x∈M given by λx(w) = ωx(v ,w)
do not vanish.

By a stable almost complex manifold (M, f ) we mean a smooth
manifold M with a smooth embedding f : M → E into some
Euclidean space E such that the normal bundle of the embedding
f admits a complex structure or, equivalently, the tangent bundle
T (M) to M admits the structure of a complex vector bundle, after
adding the product bundle M × Rk over M for an integer k ­ 0.
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Existence of an almost complex structure J on M is equivalent to
existence of a differential 2-form ω on M which is non-degenerate
at each point x ∈ M, i.e., for any non-zero vector v ∈ Tx(M),
the 1-form {λx : Tx(M)→ R}x∈M given by λx(w) = ωx(v ,w)
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By a stable almost complex manifold (M, f ) we mean a smooth
manifold M with a smooth embedding f : M → E into some
Euclidean space E such that the normal bundle of the embedding
f admits a complex structure or, equivalently, the tangent bundle
T (M) to M admits the structure of a complex vector bundle, after
adding the product bundle M × Rk over M for an integer k ­ 0.
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Orientation of stable almost complex manifolds

A way of saying that a real vector bundle E over a manifold M
is oriented is to claim that the structure group of the principal
bundle associated to E is reduced from the group GLn(R) to
the subgroup GL+n (R) of matrices with positive determinant;
i.e., the classifying map f : M → BGLn(R) of E lifts to a map

f̃ : M → BGL+n (R)

with respect to the map BGL+n (R)→ BGLn(R).
An orientation on two of the three vector bundles E1, E2, and
E1 ⊕ E2 over M determines an orientation on the third.

By definition, a smooth manifold M is oriented if the tangent
bundle T (M) is oriented, as a real vector bundle over M.

Since any complex vector bundle E over M is oriented, and the
product vector bundle M × Rk over M is oriented for any k ­ 1,
any stable almost complex manifold M is oriented.
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Classifying maps and (stable) almost complex manifolds

An oriented manifold M is almost complex if and only if the
classifying map fM : M → BGL+2n(R) of T (M) lifts to a map

f̃M : M → BGLn(C)

with respect to the forgetful map BGLn(C)→ BGL+2n(R).

An oriented manifold M is stable almost complex if and only if the
classifying map fM : M → BGL+2n(R) of T (M) composed with

BGL+2n(R)→ BGL(R) = lim
n

BGLn(R)

lifts to a map

f̃M : M → BGL(C) = lim
n

BGLn(C)

with respect to the forgetful map BGL(C)→ BGL(R).
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Symplectic and homotopically symplectic manifolds

By a closed symplectic manifold (M2n, ω) we mean a closed
smooth manifold M2n with a smooth 2-form ω which is both

closed, i.e., the exterior derivative dω = 0.

non-degenerate, i.e., ωn 6= 0 in H2n
dR(M

2n).

Corollary
Any closed symplectic manifold (M2n, ω) admits an almost
complex structure. The structure is determined by the 2-form ω.

By a closed homotopically symplectic manifold (M2n, ω) we mean
a closed almost complex manifold M2n with a cohomology class
c ∈ H2(M2n;R) such that cn 6= 0.
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Four classes of manifolds

We have defined the following four classes of manifolds:

{symplectic mfds} ⊂ {homotopically symplectic mfds} ⊂

{almost complex mfds} ⊂ {stable almost complex mfds}.

We shall give examples of manifolds showing that all inclusions
above are proper. Every stable almost complex manifold is also
oriented. We shall see that there are oriented smooth manifolds
which are not stable almost complex.
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Oriented non-stable almost complex manifolds

The following result allows us to give examples of smooth oriented
connected manifolds which are not stable almost complex.

Math. Nachr. 192 (1998) 159–172.

Corollary (A. Dessai)
Let M be a closed smooth 10-manifold with H1(M;Z) = 0 and
such that Hi (M;Z) has no 2-torsion for i = 1, 2. Assume also
that H2(M;Z) is generated by an element x such that x2 6≡ 0
(mod 2). Then M admits a stable almost complex structure if
and only if w2(M) · w4(M)2 = 0.

In particular, the existence of a stable almost complex structure on
the manifold M above depends only on the homotopy type of M.
Once we choose, e.g., a simply connected manifold M satisfying
the hypotheses above, and such that w2(M) · w4(M)2 6= 0, we get
the required example of a manifold M.
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Even dimensional spheres and their products

Amer. J. Math. 75 (1953) 409–448.

Theorem (A. Borel, J.-P. Serre)
The spheres S2 and S6 are the only spheres that admit almost
complex structures.

As H2(S6) = 0, S6 is not a homotopically symplectic manifold
while S2 = CP1 is clearly a symplectic manifold.

Topology Appl. 36 (1990) 39–42.

Theorem (B. Datta, S. Subramanian)
S2 × S4, S2 × S6, and S6 × S6 are the only products of even
dimensional spheres that admit almost complex structures.
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Odd dimensional spheres and their products

By using the principal bundle

S1 × S1 → S2m+1 × S2n+1 → CPm × CPn,

we can prove that S2m+1 × S2n+1 is a complex manifold (H. Hopf,
Interscience Publishers, Inc., New York, 1948, pp. 167–185).

The Cartesian product S2m+1 × S2n+1 of two spheres of odd
dimension is a complex manifold and therefore, the manifold
M = S2m+1 × S2n+1 is almost complex. Also, if m, n ­ 1,
H2(M) = 0 and hence, M is not homotopically symplectic.

Odd dimensional spheres are not almost complex by the dimension
reason. Clearly, all spheres (even and odd dimensional) are stable
almost complex because they are stably parallelizable.
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Examples of stable parallelizable manifolds

The manifolds S6 and S2m+1 × S2n+1 are almost complex

but
they are not homotopically symplectic.

Therefore,

{homotopically symplectic mfds} ⊂ {almost complex mfds}

is a proper inclusion.

The manifolds S4 and S8, S10, . . . are stable almost complex
but they are not almost complex.

Therefore,

{almost complex mfds} ⊂ {stable almost complex mfds}

is a proper inclusion.
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Almost complex 4-manifolds

Actualités Sci. Ind. 1183 (1952)

Theorem (W.-T. Wu)
A closed 4-manifolds M is almost complex if and only if there
exists a class c ∈ H2(M,Z) whose reduction mod 2 is w2(M),
the second Stiefel-Whitney class of M, i.e., c ≡ w2(M) (mod 2),
and

c2 = 2χ(M) + 3σ(M)

for the Euler characteristic χ(M) and the signature σ(M) of M.

The connected sum (S2 × S2)#(S2 × S2) is stable almost
complex but it is not almost complex.

The connected sum #kCP2 is always stable almost complex
and #kCP2 is almost complex if and only if k is odd.
In particular, CP2#CP2 is not almost complex.
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Almost complex connected sum

Osaka J. Math. 28 (1991) 243–253

Lemma (Y. Sato)
There exists a homology 4-sphere Σ4 with π1(Σ

4) ∼= SL2(F5).

As we have noted, CP2#CP2 is not almost complex. However,

the connected sum CP2#Σ4 is an almost complex manifold

because the cohomology rings H∗(CP2#Σ4) and H∗(CP2) are
isomorphic and to apply Wu’s theorem to confirm that CP2#Σ4

is almost complex, one may take as c ∈ H∗(CP2#Σ4) the class
corresponding to the first Chern class c1(CP2).
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Homotopically symplectic connected sum

The connected sum CP2#Σ4 is homotopically symplectic

because it is an almost complex manifold such that

H∗(CP2#Σ4;R) ∼= H∗(CP2;R)

and there exists an element c ∈ H∗(CP2#Σ4;R) with c2 6= 0,
namely the element c corresponding to c1(CP2).

We shall see that CP2#Σ4 is not a symplectic manifold.

Therefore,

{symplectic mfds} ⊂ {homotopically symplectic mfds}

is a proper inclusion.
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Taubes Theorem

For a closed 4-manifold X , let b+2 (X ) be the number of positive
entries in a diagonalization of the intersection form of X over Q

H2(X ,Q)× H2(X ,Q)→ Q

(a, b) 7→ 〈a ∪ b, [X ]〉.

Math. Research Letters 1 (1994) 809–822

Theorem (M. Taubes)
Let X and Y be two closed oriented smooth 4-manifolds such
that b+2 (X ) > 0 and b+2 (Y ) > 0. Then the connected sum X#Y
is not a symplectic manifold.

In particular, for k ­ 2, the connected sum of k copies of CP2,

#kCP2 = CP2# · · ·#CP2

is not a symplectic manifold.
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Non-symplectic connected sum

J. Sympl. Geom. Vol. 10 (2012) 17–26.

Proposition (M. Kaluba, W. Politarczyk)
Let X and M be two closed oriented smooth 4-manifolds such
that b+2 (X ) > 0 and π1(M) has a subgroup of finite index k > 1.
Then the connected sum X#M is not a symplectic manifold.
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Theorem (M. Kaluba, W. Politarczyk)
For any compact Lie group G , there exists a smooth action of G
on a complex projective space CPn such that the fixed point set
contains a connected component diffeomorphic to CP2#Σ4.

Construct a smooth action of G on a disk D2n+5 with
F (G � D2n+5) ∼= ∆5 for a contractible compact smooth
manifold ∆5 of dimension 5, such that ∂∆5 = Σ4.

The restricted action of G on ∂D2n+5 = S2n+4 is a smooth
action of G on S2n+4 such that F (G � S2n+4) ∼= Σ4.

The G -equivariant connected sum CPn+2
c#xS

2n+4 ∼= CPn+2

at two G -fixed point c ∈ CP2 ⊂ CPn+2 and x ∈ Σ4 ⊂ S2n+4

yields a smooth action of G on CPn+2 such that

F (G � CPn+2) = CP2#Σ4.
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Proof of Kaluba–Politarczyk Theorem

Trans. Amer. Math. Soc. 144 (1969) 67–72

Theorem (M. Kervaire)
Any homology 4-sphere is diffeomorphic to the boundary of
a compact contractible smooth 5-manifold.

In particular, Sato’s homology 4-sphere Σ4 bounds a compact
contractible smooth 5-manifold ∆5. As π1(∂∆

5) ∼= SL2(F5),
∆5 is not homeomorphic to D5.

Let G be a compact Lie group. As ∆5 is contractible, so is the join
X = G ∗∆5, which admits the structure of a finite G -CW complex
such that F (G � X ) = ∆5. By using the product G -vector bundle
X × V n over X for an appropriate complex G -module V n, we can
thicken up X into a disk D2n+5 equipped with a smooth action of
G such that F (G � D2n+5) = ∆5 and at any x ∈ F (G � D2n+5),
the normal G -module is the realification of V n.
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Main Theorem

Main Theorem
Let G be a compact Lie group such that G0 is nonabelian or
G/G0 is not of prime power order. There exists a smooth action
of G on some complex projective space CPd+n such that the
fixed point set F (G � CPd+n) contains connected components
M of dimension 2d which are:

stable almost complex and not almost complex,
e.g., S4, S8, S10, S12, . . . ,

almost complex and not homotopically symplectic,
e.g., S6, S2 × S4, S2 × S6, S6 × S6, and S2m+1 × S2n+1,

homotopically symplectic and not symplectic,
e.g., CP2#Σ4, where Σ4 is Sato’s homology sphere.
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The idea of the proof of Main Theorem

The case where a connected component M of the fixed point set
F (G � CPd+n) is homotopically symplectic and not symplectic is
covered by the Kaluba-Politarczyk Theorem. In the remaining two
cases of M, we argue as follows.

First, we construct a smooth action of G on S2d+2n such that
F (G � S2d+2n) contains two connected components: one is
the sphere S2d and the other one is the manifold M.
Moreover, at any point x ∈ S2d , the normal G -module is
the realification of a complex n-dimensional G -module V n.
Then, we consider the equivariant projectivization

CPd+n = P(Cd ⊕ C1 ⊕ V n) = S(Cd ⊕ C1 ⊕ V n)/S1.

Hence, F (G � CPd+n) ⊃ CPd as a connected component
and V n occurs as the normal G -module at any c ∈ CPd .
Now, we form CPd+n

c#xS
2d+2n ∼= CPd+n at two points

c ∈ CPd ⊂ CPd+n and x ∈ S2d ⊂ S2d+2n to obtain that
F (G � CPd+n) ⊃ M as a connected component.
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Doubling of actions

In order to obtain the required smooth action of G on S2d+2n,

first we construct a smooth action of G on D2d+2n such that

F (G � D2d+2n) ⊃ D2d tM with ∂M = ∅.

By forming the G -equivariant double

∂(D2d+2n × D1) = S2d+2n,

we obtain a smooth action of G on S2d+2n such that

F (G � S2d+2n) ⊃ S2d tM tM.

As far as the action of G on D2n+2d is concerned, it is obtained
by the equivariant thickening technique.
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The equivariant thickening technique

Topology 28 (1989) 273–289

Theorem (K. Pawałowski)
Let G be a compact Lie group. Let M be a compact smooth
manifold. Let X be a finite contractible G -CW complex with
F (G � X ) = D2d tM. Let E be a G -vector bundle over X
such that F (G � E |D2dtM) is stably isomorphic to T (D2d tM).
Then there exists a smooth action of G on a disk D2d+2n with

F (G � D2d+2n) ∼= D2d tM

and at any point x ∈ D2d , the normal G -module is isomorphic
to the realification of a complex n-dimensional G -module V n.
Also, there exists a G -homotopy equivalence f : D2d+2n → X
such that f ∗(E ) is stably G -isomorphic to T (D2d+2n).
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Dōmo arigatō gozaimasu!
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