Weighted Stanley-Reisner ring and Equivariant Cohomology Ring of a Singular Toric Variety

Jongbaek Song (jointly with Anthony Bahri and Soumen Sarkar)

Department of Mathematical Sciences, KAIST

The 43rd Symposium on Transformation Groups Himeji Civic hall November 17(Thu)-November 19(Sat), 2016

Simplicial complex

Simplicial complex + Geometry

Toric Variety

Definition

A toric variety is a normal complex algebraic variety with algebraic $(\mathbb{C}^*)^n$ -action having a dense orbit.

Theorem (Fundamental theorem for toric varieties)

The category of toric varieties is equivalent to the category of fans.

$$X_{\Sigma} \longleftrightarrow \Sigma_X$$

Orbifold: a very rough introduction

A topological space, locally homeomorphic to \tilde{U}/G ,

- \tilde{U} : open subset in \mathbb{R}^n ,
- ② G: finite subgroup of O(n), and $G \curvearrowright \tilde{U}$.
- **3** G acts (effectively) on \tilde{U} via the action of O(n) on \mathbb{R}^n .

- (\tilde{U}, G, ϕ) : an orbifold chart around $\phi(0)$,
- G: the local group around $\phi(0)$

A natural source for making an orbifold

- M: a smooth manifold,
- G: a compact Lie group acting smoothly, effectively, and almost freely¹ on M.
- $\Rightarrow M/G$: an orbifold with the following orbifold chart near $[x] \in M/G$,

$$(x \in U \underset{\mathsf{open}}{\subset} M, \ G_x, \ \phi \colon U \to U/G_x)$$

¹A point may have a finite stabilizer

Toric Orbifold

- A fan Σ is called a simplicial fan, if for each $cone(\lambda_{i_1},\ldots,\lambda_{i_n})\in\Sigma$, $\{\lambda_{i_1},\ldots,\lambda_{i_n}\}\subset\mathbb{Z}^n$ is linearly independent.
- The toric variety X_Σ associated to a simplicial fan is called a toric orbifold.

Question

What are "M" and "G" in this setting?

About M

$$K \sim \mathcal{Z}_K = \bigcup_{\sigma \in K} (D^2, S^1)^{\nu} \subset \mathbb{C}^m,$$

where if $\sigma = \{i_1 \cup \cdots \cup i_n\} \in K$,

$$(D^2, S^1)^{\sigma} = \prod_{j=1}^m A_j, \ A_j = \begin{cases} D^2 & j \in \{i_1, \dots, i_n\} \\ S^1 & j \notin \{i_1, \dots, i_n\} \end{cases}$$

Proposition

- \bigcirc \mathcal{Z}_K is an (m+n)-dimensional smooth manifold.
- ② T^m acts on \mathcal{Z}_K by coordinate multiplication.

About G

- $\bullet \Lambda := [\lambda_1 \mid \cdots \mid \lambda_m] : \mathbb{Z}^m \to \mathbb{Z}^n$
- $0 \longrightarrow \ker \tilde{\Lambda} \longrightarrow T^m \xrightarrow{\tilde{\Lambda}} T^n \longrightarrow 0$

Proposition

 $\ker \tilde{\Lambda}$ acts on \mathcal{Z}_K almost freely.

Definition (Toric orbifold)

$$X_{\Sigma} := \mathcal{Z}_K / \ker \tilde{\Lambda}$$

Example

•
$$\mathcal{Z}_K = (D^2 \times D^2 \times S^1) \cup (D^2 \times S^1 \times D^2) \cup (S^1 \times D^2 \times D^2)$$

= $\partial (D^2 \times D^2 \times D^2) = S^5$

•
$$2\begin{bmatrix}1\\0\end{bmatrix} + 3\begin{bmatrix}1\\5\end{bmatrix} + 5\begin{bmatrix}-1\\-3\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix} \rightsquigarrow \ker \tilde{\Lambda} = \{(t^2, t^3, t^5) \mid t \in S^1\} \subset T^3.$$

•
$$X_{\Sigma} = S^5 / \ker \tilde{\Lambda} = \mathbb{C}P^2_{(2,3,5)}$$
.

Question:
$$\mathbb{C}P^n_{(a_0,...,a_n)}\stackrel{?}{\cong} \mathbb{C}P^n$$

Theorem (Kawasaki, '73)

For
$$(a_0,\ldots,a_n)\in\mathbb{N}^{n+1}$$
 with $\gcd(a_0,\ldots,a_n)=1$,

$$H^i(w\mathbb{C}P^n_{(a_0,...,a_n)};\mathbb{Z})\congegin{cases} \mathbb{Z} & \textit{if }i\textit{=even}\ 0 & \textit{if }i\textit{=odd} \end{cases}.$$

Moreover, if
$$\langle \gamma_k \rangle = H^{2k}(w\mathbb{C}P^n_{(a_0,...,a_n)};\mathbb{Z})$$
,

$$\gamma_i \cup \gamma_j = \frac{\ell_i \ell_j}{\ell_{i+j}} \gamma_{i+j},$$

where
$$\ell_k = \operatorname{lcm}\left\{ \frac{a_{i_0} \cdots a_{i_k}}{\gcd(a_{i_0}, \dots, a_{i_k})} \mid 0 \leq i_0 < \dots < i_k \leq n \right\}$$
.

After Kawasaki...

- (Al. Amrani, 1994) K-theory of $w\mathbb{C}P$.
- (Nishimura–Yoshimura, 1997) KO-theory of $w\mathbb{C}P$.
- **1** (Bahri–Franz–Ray, 2009) Equivariant cohomology of $w\mathbb{C}P$.
- (Bahri–Franz–Notbohm-Ray, 2013) The classification of $w\mathbb{C}P$, up to homeomorphism and homotopy, in terms of weights.

History

Theorem (Danilov '78, Jurkiewicz '85)

For a smooth toric variety X_{Σ} ,

$$H^*(X_{\Sigma}; \mathbb{Z}) \cong \mathcal{SR}(K; \mathbb{Z})/\mathcal{J},$$

where
$$\mathcal{J} = \langle \sum_{i=1}^{m} \langle \lambda_i, e_i \rangle x_i = 0 \mid j = 1, \dots, n \rangle$$

Theorem (Danilov '78)

For a toric orbifold X_{Σ} ,

$$H_T^*(X_\Sigma;\mathbb{Q})\cong \mathcal{SR}(K;\mathbb{Q})/\mathcal{J}.$$

Summary

 \bullet Σ : a smooth/simplicial fan.

• *K*: underlying simplicial complex.

• X_{Σ} : associated toric variety.

	$H^*(X_\Sigma;\mathbb{Q})$	$H^*(X_\Sigma;\mathbb{Z})$
Toric manifolds	$\mathcal{SR}(K;\mathbb{Q})/\mathcal{J}$	$\mathcal{SR}(K;\mathbb{Z})/\mathcal{J}$
Toric orbifolds	$\mathcal{SR}(K;\mathbb{Q})/\mathcal{J}$??

Revisit the Stanley–Reisner ring

$$e_{13}$$
 $\lambda_1 = (2, 1)$
 e_{24} $\lambda_4 = (0, -1)$

$$e_{13} \lambda_{1} = (2,1)$$

$$e_{24} \lambda_{4} = (0,-1)$$

$$1 \quad 2 \quad 3 \quad 4$$

$$-\frac{1}{2}u_{1} + u_{2} \quad 0$$

$$0 \quad u_{2} \quad -u_{1} \quad 0$$

$$0 \quad -u_{1} \quad 0 \quad -u_{2}$$

$$e_{24} \cdot \lambda_{4} = (0,-1)$$

$$\frac{1}{2}u_{1} \quad 0 \quad 0$$

$$\frac{1}{2}u_{1} - u_{2}$$

$$\begin{bmatrix} \lambda_1 & \lambda_3 \end{bmatrix}^{-1} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}u_1 \\ -\frac{1}{2}u_1 + u_2 \end{bmatrix}$$

$$\begin{bmatrix} \lambda_1 & \lambda_4 \end{bmatrix}^{-1} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 1 & -1 \end{bmatrix}^{-1} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\ \frac{1}{2} & -1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}u_1 \\ \frac{1}{2}u_1 - u_2 \end{bmatrix}$$

In general...

$$orall \sigma = cone\{\lambda_{i_1}, \dots, \lambda_{i_n}\} \in \Sigma^{(n)},$$
 $\leadsto \quad z^{\sigma} := (z_1^{\sigma}, \dots, z_m^{\sigma}) \in \bigoplus_m \mathbb{Q}[u_1, \dots, u_n], \text{ by }$

(C1)
$$z_j^{\sigma} = 0 \text{ if } j \notin \{i_1, \dots, i_n\},$$

(C2)
$$\begin{bmatrix} z_{i_1}^{\sigma} \\ \vdots \\ z_{i_n}^{\sigma} \end{bmatrix} = \begin{bmatrix} \lambda_{i_1} & \cdots & \lambda_{i_n} \end{bmatrix}^{-1} \cdot \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}.$$

Definition

 $h(x_1,\ldots,x_m)\in\mathbb{Z}[x_1,\ldots x_m]$ satisfies the integrality condition with respect to Σ , if $h(z^{\sigma})\in\mathbb{Z}[u_1,\ldots,u_n]$ for all $\sigma\in\Sigma^{(n)}$.

Weighted Stanley-Reisner Ring

$$wSR[\Sigma] := \{h \in \mathbb{Z}[x_1, \dots, x_m] \mid h \text{ satisfies integrality condition}\}/\mathcal{I}.$$

Remark

- When the fan Σ is smooth, $wSR[\Sigma] = SR[\Sigma]$.
- In general, $wSR[\Sigma] \subset SR[\Sigma]$.

Example

1	2	3	4	
$\int \frac{1}{2}u_1$	0	$-\frac{1}{2}u_1+u_2$	0]	e_{13}
0	u_2	$-u_1$	0	e_{23}
0	$-u_1$	0	$-u_2$	e_{24}
$\lfloor \frac{1}{2}u_1$	0	0	$\frac{1}{2}u_1-u_2$	e_{14}

• Degree 2 elements are...

$$2x_1$$
, x_2 , $2x_3$, $2x_4$, $2x_1 - x_2$ and $x_1 + x_3 - x_4$.

Degree 4 elements are...

$$4x_1^2$$
, x_2^2 , $4x_3^2$, $4x_4^2$, $4x_1x_3$, $4x_1x_4$, x_2x_3 and x_2x_4 .

•

Main theorem

Theorem (Bahri-Sarkar-S, arXiv:1509.03228)

For a toric orbifold X_{Σ} with $H^{odd}(X_{\Sigma})=0$,

$$H^*(X_{\Sigma}; \mathbb{Z}) \cong wSR(\Sigma; \mathbb{Z})/\mathcal{J}.$$

	$H^*(X_\Sigma;\mathbb{Q})$	$H^*(X_\Sigma;\mathbb{Z})$
Toric manifolds	$\mathcal{SR}(K;\mathbb{Q})/\mathcal{J}$	$\mathcal{SR}(K;\mathbb{Z})/\mathcal{J}$
Toric orbifolds	$\mathcal{SR}(K;\mathbb{Q})/\mathcal{J}$	$w\mathcal{SR}(\Sigma;\mathbb{Z})/\mathcal{J}$

Proof

Chang–Skjelbred sequence

$$0 \to H^*_T(X_\Sigma; \mathbb{Z}) \to H^*_T(X_\Sigma^0; \mathbb{Z}) \to H^*_T(X_\Sigma^1, X_\Sigma^0; \mathbb{Z}) \to \cdots$$

is exact.

- ② $H_T^*(X_\Sigma; \mathbb{Z}) \cong \mathcal{PP}(\Sigma; \mathbb{Z})$, the ring of piecewise polynomials.

Questions

- (Non-mathematrically...) Are you happy with the assumption $H^{odd}(X) = 0$?
- (Mathematically...) Are there any necessary or sufficient conditions for $H^{odd}(X) = 0$?

Partial answer

[Kuwata, Zeng, Masuda arXiv:1604.03138] Torsions in the cohomology of torus orbifolds.

- The complete answer for 4-dimensional torus orbifolds.
- A necessary condition for arbitrary dimensional torus orbifolds.

A retraction sequence

$$(\mathbb{C}^*)^n \curvearrowright X_{\Sigma} \quad \leadsto \quad T^n \curvearrowright X_{\Sigma} \quad \leadsto \quad \pi : X \to Q$$

A retraction sequence is, for instance,

In terms of simplicial complex, (special case of) shelling.

Why retraction..?

- $\pi^{-1}(Q) = X_{\Sigma}$
- $\pi^{-1}(B_2) = \bigcup_{E: \text{ face of } B_2} \pi^{-1}(E), \text{ where } \pi^{-1}(E) = X_{\Sigma}.$
- $\pi^{-1}(\Delta_O(v)) = S^{2n-1}/G_v$, where $|G_v| = |\det \Lambda_v|$

How are they related?

Proposition

The composition

$$\pi^{-1}(\Delta_{Q}(\nu)) \xrightarrow{f} \bigcup_{E: \text{ face of } B_{2}} \pi^{-1}(E) \hookrightarrow X_{\Sigma}$$

is a cofiber sequence. i.e., $X_{\Sigma} \simeq c(f)$

Corollary

$$H_*(X_{\Sigma}, \pi^{-1}(B_2)) \cong H_*(C(L(\Delta_Q(v), \xi_v)), \pi^{-1}(B_2))$$

 $\cong \tilde{H}_{*-1}(\pi^{-1}(\Delta_O(v))).$

Since $\pi^{-1}(E)$ is another toric variety...

Proposition

For each face $E \subset Q$, the composition

$$\pi^{-1}(\Delta_E(\nu)) \xrightarrow{f_E} \bigcup_{F: \text{ face of } B_3} \pi^{-1}(F) \hookrightarrow X_E$$

is a cofiber sequence. i.e., $X_E \simeq c(f_E)$

Corollary

$$H_*(X_E, \pi^{-1}(B_3)) \cong H_*(C(L(\Delta_E(b_2), \xi_v)), \pi^{-1}(B_3))$$

 $\cong \tilde{H}_{*-1}(\pi^{-1}(\Delta_E(b_2))).$

The long exact sequence of pair $(X_{\Sigma}, \pi^{-1}(B_2))$

$$\rightarrow H_{j+1}(X_{\Sigma}, \pi^{-1}(B_2)) \rightarrow H_{j}(\pi^{-1}(B_2)) \rightarrow H_{j}(X_{\Sigma}) \longrightarrow H_{j}(X_{\Sigma}, \pi^{-1}(B_2)) \longrightarrow$$

$$\parallel$$

$$\tilde{H}_{j}(\pi^{-1}(\Delta_{Q}(v)))$$

$$\parallel$$

$$|G_{v}|\text{-torsion}$$

$$|G_{v}|\text{-torsion}$$

Main Theorem: A sufficient condition for $H^{odd} = 0$.

Theorem

Let X_{Σ} be a toric orbifold with $\pi \colon X \to Q$ the orbit map. Assume that for each $B \in \mathfrak{B}(Q)$ with $\dim B \geq 1$,

$$\gcd\{|G_E(v)|:v\in FV(B)\}=1,$$

Then, the homology $H_*(X)$ is torsion free and concentrated in even degrees.

Theorem

Under the above assumption,

$$H^*(X_{\Sigma}; \mathbb{Z}) \cong wSR[\Sigma]/\mathcal{J}.$$

Example: Orbifold Hirzebruch surface

$$H^*(\mathfrak{H}_b)$$
 VS $H^*(\mathfrak{H}_{(a,b)})$

$$H^j(\mathfrak{H}_{(a,b)}) = w\mathcal{SR}[\Sigma]/\mathcal{J} = egin{cases} \mathbb{Z} & ext{if } j = 0 \ \mathbb{Z}\langle w_1
angle \oplus \mathbb{Z}\langle w_2
angle & ext{if } j = 2 \ \mathbb{Z}\langle w_3
angle & ext{if } j = 4 \ 0 & ext{otherwise}. \end{cases}$$

Multiplication structure is given by..

- $w_1^2 = 0$,
- $w_1w_2 = aw_3$.
- $\bullet \ w_2^2 = abw_3,$
- $w_1w_3 = w_2w_3 = w_3^2 = 0.$

Remark

$$H^*(\mathfrak{H}_b) = \mathbb{Z}[w_1, w_2]/\langle w_1^2, w_2^2 - bw_1w_2 \rangle.$$

THANK YOU FOR YOUR ATTENTION!